987 research outputs found

    Development of an algebraic turbulence model for analysis of propulsion flows

    Get PDF
    A simple turbulence model that will be applicable to propulsion flows having both wall bounded and unbounded regions was developed and installed within the PARC Navier-Stokes code by linking two existing algebraic turbulence models. The first is the Modified Mixing Length (MML) model which is optimized for wall bounded flows. The second is the Thomas model, the standard algebraic turbulence model in PARC which has been used to calculate both bounded and unbounded turbulent flows but was optimized for the latter. This paper discusses both models and the method employed to link them into one model (referred to as the MMLT model). The PARC code with the MMLT model was applied to two dimensional turbulent flows over a flat plate and over a backward facing step to validate and optimize the model and to compare its predictions to those obtained with the three turbulence models already available in PARC

    Correlation Effects on the MIMO Capacity for Conformal Antennas on a Paraboloid

    Get PDF
    The use of conformal antennas in a MIMO link scenario is investigated. Conformal slot antennas are considered both in the transmitter and the receiver. First, a new modified correlation coefficient is derived that goes beyond the Clarke coefficient and takes into account the element radiation pattern. Secondly, a hybrid formulation that accounts for the impact of the mutual coupling and the pattern dependent correlation on the capacity is presented. The mutual coupling for slots placed circumferentially on a paraboloid substrate is derived using a rigorous approach based on Uniform Theory of Diffraction (UTD). The capacity is evaluated for the case of Rayleigh fading channel considering the new pattern dependent correlation coefficient and the conformal antenna mutual coupling. The planar case is included as a limiting case. It is shown that for conformal antennas on a paraboloid the capacity degradation compared to the planar case is up to 0.5 bps/Hz due to coupling and correlation.Grant numbers : The authors acknowledge EU COST Action IC1301 Wireless Power Transmission for Sustainable Electronics

    An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    Get PDF
    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange

    A comparative study of computational solutions to flow over a backward-facing step

    Get PDF
    A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important

    A metabonomic approach to the evaluation of xenobiotic metabolism and toxicity

    Full text link
    This thesis comprises of studies which collectively describe the development and application of novel metabonomic approaches to the investigation of xenobiotic metabolism and toxicity. Both computational and UPLC-MS technologies are critically evaluated to facilitate the development of rapid, robust and high throughput analytical approaches for the analysis of compounds in biological matrices, particularly applicable in the area of drug discovery. Pattern recognition statistical modelling approaches were employed on both a small scale metabolism study of diclofenac and a large toxicology of acetaminophen. This methodology highlighted large differences between the test groups in both studies; however these discriminations were only compound related in the latter study. In a study with low statistical power, the probability of biologically unrelated processes, overwhelming the statistical significance of the compound related effects are quite high. Application of statistical normalisation for the correction of batch effects was also performed in an attempt to emolliate the issue of limited continuous LC-MS instrumental capacity. Batch correction was attempted using variance stabilisation with a glog function prior to median fold change normalisation. However, this approach was unable to correct the data to the extent where it was suitable for combined downstream analysis. A rapid gradient microbore UPLC-MS method is then described to provide a high-throughput solution for metabolic phenotyping of large sample collections. This method increases the flow rate, decreases the column diameter and the gradient elution time, reducing the length of the analysis of each individual while retaining the diagnostic capability of the experiment. The combined insights gained through this method development process are then applied to two separate toxicity studies of 2-bromophenol, one of acute and one of chronic exposure. UPLC-MS analysis coupled with 1H NMR spectroscopy identified the major metabolites as the sulphate and glucuronide conjugates, and other changes in endogenous metabolites. However the lack of reactive intermediates or other toxic metabolites indicate that 2-bromophenol is not a nephrotoxin. While these studies failed to discover any compound related toxicity, they have exemplified the utility of the metabonomic approach in this area.  Open Acces

    Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    Get PDF
    The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing

    Evaluation of turbulence models in the PARC code for transonic diffuser flows

    Get PDF
    Flows through a transonic diffuser were investigated with the PARC code using five turbulence models to determine the effects of turbulence model selection on flow prediction. Three of the turbulence models were algebraic models: Thomas (the standard algebraic turbulence model in PARC), Baldwin-Lomax, and Modified Mixing Length-Thomas (MMLT). The other two models were the low Reynolds number k-epsilon models of Chien and Speziale. Three diffuser flows, referred to as the no-shock, weak-shock, and strong-shock cases, were calculated with each model to conduct the evaluation. Pressure distributions, velocity profiles, locations of shocks, and maximum Mach numbers in the duct were the flow quantities compared. Overall, the Chien k-epsilon model was the most accurate of the five models when considering results obtained for all three cases. However, the MMLT model provided solutions as accurate as the Chien model for the no-shock and the weak-shock cases, at a substantially lower computational cost (measured in CPU time required to obtain converged solutions). The strong shock flow, which included a region of shock-induced flow separation, was only predicted well by the two k-epsilon models

    Calculation of Turbulent Subsonic Diffuser Flows Using the NPARC Navier-Stokes Code

    Get PDF
    Axisymmetric subsonic diffuser flows were calculated with the NPARC Navier-Stokes code in order to determine the effects various code features have on the flow solutions. The code features examined in this work were turbulence models and boundary conditions. Four turbulence models available in NPARC were used: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, and the Chien kappa-epsilon and Wilcox kappa-omega two-equation models. The three boundary conditions examined were the free boundary, the mass flux boundary and the subsonic outflow with variable static pressure. In addition to boundary condition type, the geometry downstream of the diffuser was varied to see if upstream influences were present. The NPARC results are compared with experimental data and recommendations are given for using NPARC to compute similar flows
    corecore