76 research outputs found

    Higgs boson bounds in non-minimal supersymmetric standard models

    Full text link
    In the minimal supersymmetric standard model (MSSM), when radiative corrections are included, the mass of the CP=+1CP=+1 lightest Higgs boson is bounded by ∌110 GeV\sim 110\ GeV for mt<150 GeVm_t < 150\ GeV and a scale of supersymmetry breaking ∌ 1 TeV\sim\ 1\ TeV. In non-minimal supersymmetric standard models (NMSSM) upper bounds on the mass of the corresponding scalar Higgs boson arise if the theory is required to remain perturbative up to scales ≫GF−1/2\gg G_F^{-1/2}. We have computed those bounds for two illustrative NMSSM: i) A model with an arbitrary number of gauge singlets; ii) A model with three SU(2)LSU(2)_L triplets with Y=0,±1Y=0,\pm 1. We have integrated numerically the corresponding renormalization group equations (RGE), including the top and bottom quark Yukawa couplings, and added one-loop radiative corrections. For mt>91 GeVm_t > 91\ GeV the absolute bounds are ∌140 GeV\sim 140\ GeV for both models.Comment: 8 pages, (Talk presented at the XXVI INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS, August 6-12, 1992, Dallas), latex, IEM-FT-60/92, 3 figures (available by Fax upon request

    On the Spontaneous CP Breaking in the Higgs Sector of the Minimal Supersymmetric Standard Model

    Full text link
    We revise a recently proposed mechanism for spontaneous CP breaking at finite temperature in the Higgs sector of the Minimal Supersymmetric Standard Model, based on the contribution of squarks, charginos and neutralinos to the one-loop effective potential. We have included plasma effects for all bosons and added the contribution of neutral scalar and charged Higgses. While the former have little effect, the latter provides very strong extra constraints on the parameter space and change drastically the previous results. We find that CP can be spontaneously broken at the critical temperature of the electroweak phase transition without any fine-tuning in the parameter space.Comment: 9 pages, LATEX, 3 appended postscript figures, IEM-FT-76/9

    The Inverse Amplitude Method and Heavy Baryon Chiral Perturbation Theory applied to pion-nucleon scattering

    Get PDF
    We report on our present work, where by means of the Inverse Amplitude Method we unitarize the elastic pion nucleon scattering amplitudes of Heavy Barion Chiral Perturbation Theory at O(q^3). We reproduce the scattering up to the inelastic thresholds including the Delta(1232) resonance. The fitted chiral constants are rather different from those obtained by fitting the extrapolated threshold parameters for the non-unitarized theory.Comment: Talk given at the 8th International Conference on Hadron Spectroscopy, HADRON99, August 24-28, 1999, Beijing, China. 4 pages LaTex, uses espcrc1.sty (included

    Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment

    Full text link
    To explain both the OPERA experiment and all the known phenomenological constraints/observations on Lorentz violation, the Background Dependent Lorentz Violation (BDLV) has been proposed. We study the BDLV in a model independent way, and conjecture that there may exist a "Dream Special Relativity Theory", where all the Standard Model (SM) particles can be subluminal due to the background effects. Assuming that the Lorentz violation on the Earth is much larger than those on the interstellar scale, we automatically escape all the astrophysical constraints on Lorentz violation. For the BDLV from the effective field theory, we present a simple model and discuss the possible solutions to the theoretical challenges of the OPERA experiment such as the Bremsstrahlung effects for muon neutrinos and the pion decays. Also, we address the Lorentz violation constraints from the LEP and KamLAMD experiments. For the BDLV from the Type IIB string theory with D3-branes and D7-branes, we point out that the D3-branes are flavour blind, and all the SM particles are the conventional particles as in the traditional SM when they do not interact with the D3-branes. Thus, we not only can naturally avoid all the known phenomenological constraints on Lorentz violation, but also can naturally explain all the theoretical challenges. Interestingly, the energy dependent photon velocities may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde

    Bound States and Power Counting in Effective Field Theories

    Get PDF
    The problem of bound states in effective field theories is studied. A rescaled version of nonrelativistic effective field theory is formulated which makes the velocity power counting of operators manifest. Results obtained using the rescaled theory are compared with known results from NRQCD. The same ideas are then applied to study Yukawa bound states in 1+1 and 3+1 dimensions, and to analyze when the Yukawa potential can be replaced by a delta-function potential. The implications of these results for the study of nucleon-nucleon scattering in chiral perturbation theory is discussed.Comment: 23 pages, eps figures, uses revte

    Hypercharge and baryon minus lepton number in E6

    Full text link
    We study assignments of the hypercharge and baryon minus lepton number for particles in the E6E_6 grand unification model. It is shown that there are three assignments of hypercharge and three assignments of baryon minus lepton number which are consistent with the Standard Model. Their explicit expressions and detailed properties are given. In particular, we show that the U(1)B−LU(1)_{B-L} symmetry in E6E_6 cannot be orthogonal to the SU(3)RSU(3)_R symmetry. Based on these investigations, we propose an alternative SU(5) grand unification model.Comment: 16 pages, JHEP3.cls, To appear in JHE

    Upper Bounds on the Lightest Higgs Boson Mass in General Supersymmetric Standard Models

    Full text link
    In a general supersymmetric standard model there is an upper bound mhm_h on the tree level mass of the CP=+1CP=+1 lightest Higgs boson which depends on the electroweak scale, tan⁥ÎČ\tan \beta and the gauge and Yukawa couplings of the theory. When radiative corrections are included, the allowed region in the (mh,mt)(m_h,m_t) plane depends on the scale Λ\Lambda, below which the theory remains perturbative, and the supersymmetry breaking scale Λs\Lambda_s, that we fix to 1 TeV1\ TeV. In the minimal model with Λ=1016 GeV\Lambda=10^{16}\ GeV: $m_h<130\ GeVand and m_t<185\ GeV.Innon−minimalmodelswithanarbitrarynumberofgaugesingletsand. In non-minimal models with an arbitrary number of gauge singlets and \Lambda=10^{16}\ GeV:: m_h<145\ GeVand and m_t<185\ GeV.WealsoconsidersupersymmetricstandardmodelswitharbitraryHiggssectors.Formodelswhosecouplingssaturatethescale. We also consider supersymmetric standard models with arbitrary Higgs sectors. For models whose couplings saturate the scale \Lambda=10^{16}\ GeVwefind we find m_h<155\ GeVand and m_t<190\ GeV.Asonepushesthesaturationscale. As one pushes the saturation scale \Lambdadownto down to \Lambda_s,theboundson, the bounds on m_hand and m_tincrease.Forinstance,inmodelswith increase. For instance, in models with \Lambda=10\ TeV,theupperboundsfor, the upper bounds for m_hand and m_tgoto go to 415\ GeVand and 385\ GeV$, respectively.Comment: 13 pages, latex, IEM-FT-64/92 (5 postscript figures availables upon request

    The Minimal Supersymmetric Fat Higgs Model

    Get PDF
    We present a calculable supersymmetric theory of a composite ``fat'' Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.Comment: 13 pages, 5 figures, REVTe

    Spontaneous CP Violation in Non-Minimal Supersymmetric Models

    Full text link
    We study the possibilities of spontaneous CP violation in the Next-to-Minimal Supersymmetric Standard Model with an extra singlet tadpole term in the scalar potential. We calculate the Higgs boson masses and couplings with radiative corrections including dominant two loop terms. We show that it is possible to satisfy the LEP constraints on the Higgs boson spectrum with non-trivial spontaneous CP violating phases. We also show that these phases could account for the observed value of epsilonK.Comment: 21 pages, 7 Figures in Encapsulated Postscrip

    Bottom-Tau Unification in SUSY SU(5) GUT and Constraints from b to s gamma and Muon g-2

    Full text link
    An analysis is made on bottom-tau Yukawa unification in supersymmetric (SUSY) SU(5) grand unified theory (GUT) in the framework of minimal supergravity, in which the parameter space is restricted by some experimental constraints including Br(b to s gamma) and muon g-2. The bottom-tau unification can be accommodated to the measured branching ratio Br(b to s gamma) if superparticle masses are relatively heavy and higgsino mass parameter \mu is negative. On the other hand, if we take the latest muon g-2 data to require positive SUSY contributions, then wrong-sign threshold corrections at SUSY scale upset the Yukawa unification with more than 20 percent discrepancy. It has to be compensated by superheavy threshold corrections around the GUT scale, which constrains models of flavor in SUSY GUT. A pattern of the superparticle masses preferred by the three requirements is also commented.Comment: 21pages, 6figure
    • 

    corecore