9 research outputs found

    A unifying modelling of multiple land degradation pathways in Europe

    Get PDF
    Land degradation is a complex socio-environmental threat, which generally occurs as multiple concurrent pathways that remain largely unexplored in Europe. Here we present an unprecedented analysis of land multi-degradation in 40 continental countries, using twelve dataset-based processes that were modelled as land degradation convergence and combination pathways in Europe’s agricultural (and arable) environments. Using a Land Multi-degradation Index, we find that up to 27%, 35% and 22% of continental agricultural (~2 million km2) and arable (~1.1 million km2) lands are currently threatened by one, two, and three drivers of degradation, while 10–11% of pan-European agricultural/arable landscapes are cumulatively affected by four and at least five concurrent processes. We also explore the complex pattern of spatially interacting processes, emphasizing the major combinations of land degradation pathways across continental and national boundaries. Our results will enable policymakers to develop knowledge-based strategies for land degradation mitigation and other critical European sustainable development goals

    BLACK SEA STORM RISK FACTOR FOR THE CRITICAL INFRASTRUCTURE OF THE ROMANIAN COASTAL SPACE

    No full text
    Romanian coastal environment is affected, as clearly appears in the analysis of phenomena regions risk map of Romania, by two distinct categories of natural hazards namely climate risks (mainly storms) and the risks arising from changes in sea level. Climate risks act on short and very short term, resulting in acceleration of all coastal and beach processes, causing profound morphological changes on ecosystems and property damage by inducing destruction of facilities, port construction, settlements, etc. Risks caused by changing sea levels have long-term effect, current growth rates causing damage in the coming 25 ... 50 years. Combined, these two categories of natural hazards adversely induce higher proportion of critical infrastructure in the Romanian coastal area

    Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania

    No full text
    Changes in plant phenology are a direct indicator of climate change and can produce important consequences for agricultural and ecological systems. This study analyzes changes in plant phenology in the 1961–2010 period (for both the entire interval and in three successive multi-decades: 1961–1990, 1971–2000 and 1981–2010) in southern and southeastern Romania, the country’s most important agricultural region. The analysis is based on mean monthly air temperature values collected from 24 regional weather stations, which were used for extracting the length (number of days) of phenophases (growing season onset, budding–leafing, flowering, fruiting, maturing, dissemination of seeds, start of leaf loss, end of leaf loss) and of the overall climatic growing season (CGS, which includes all phenophases), by means of the histophenogram method. Using a number of reliable statistical tools (Mann–Kendall test, Sen’s slope estimator and the regression method) for exploring annual trends and net (total) changes in the length of the phenological periods, as well as for detecting the climate—growing season statistical relationships, our results revealed complex phenology changes and a strong response in phenological dynamics to climate warming. Essentially, a lengthening of all phenophases (maximal in the maturing period, in terms of statistical significance and magnitude of trends—on average 0.48 days/yr/24 days net change in the 1961–2010 period, or even 0.94 days/yr/28 days net change in the 1971–2000 sub-period) was noticed, except for the fruiting and dissemination phenophases, which were dominated by negative trends in the number of days, but partially statistically significant (at a confidence level threshold of at least 90%). The CGS exhibited overall increasing trends, with an average of 0.21 days/yr/11 days net change in the 1961–2010 interval, and even of 0.90 days/yr/27 days net change in the 1981–2010 sub-period. Moreover, based on the slope values obtained upon application of a linear regression to mean temperature and CGS, we discovered that a 1 °C increase in climate warming accounted for a remarkable lengthening of the CGS, on average of 14 days between 1961 and 2010, and of 16 days between 1981 and 2010. Our results can help improve the adaptation of agroecological systems to future climate change

    Use of hybrid renewable energy systems for small communities

    No full text
    The purpose of this article is to present how the sizing of a hybrid renewable energy system is done for a community of three hundred and five households located in a Delta, starting from the optimization of hybrid energy system for a single household. The methodology used in solving this problem is based on multiple options. The first option consists in determined energy needs, maximum power consumption in cold season and in adapting the solution for the production of electricity by a hybrid plant. The second option consists of energy needs resulted in average consumption of electricity in warm season and in adapting the solution for the production of electricity from a hybrid plant. In conjunction with the demand for electricity for the entire community one will get energy demand by aggregating household level (kWh/household). The novelty of this approach lies in the method used by these hybrid systems for obtaining electricity in small communities, isolated from this case study. Based on the results obtained the method can be expanded the implementation of these projects that use hybrid renewable energy systems

    Use of hybrid renewable energy systems for small communities

    No full text
    The purpose of this article is to present how the sizing of a hybrid renewable energy system is done for a community of three hundred and five households located in a Delta, starting from the optimization of hybrid energy system for a single household. The methodology used in solving this problem is based on multiple options. The first option consists in determined energy needs, maximum power consumption in cold season and in adapting the solution for the production of electricity by a hybrid plant. The second option consists of energy needs resulted in average consumption of electricity in warm season and in adapting the solution for the production of electricity from a hybrid plant. In conjunction with the demand for electricity for the entire community one will get energy demand by aggregating household level (kWh/household). The novelty of this approach lies in the method used by these hybrid systems for obtaining electricity in small communities, isolated from this case study. Based on the results obtained the method can be expanded the implementation of these projects that use hybrid renewable energy systems
    corecore