1,844 research outputs found

    Second order perturbation theory for embedded eigenvalues

    Full text link
    We study second order perturbation theory for embedded eigenvalues of an abstract class of self-adjoint operators. Using an extension of the Mourre theory, under assumptions on the regularity of bound states with respect to a conjugate operator, we prove upper semicontinuity of the point spectrum and establish the Fermi Golden Rule criterion. Our results apply to massless Pauli-Fierz Hamiltonians for arbitrary coupling.Comment: 30 pages, 2 figure

    Why we interact : on the functional role of the striatum in the subjective experience of social interaction

    Get PDF
    Acknowledgments We thank Neil Macrae and Axel Cleeremans for comments on earlier versions of this manuscript. Furthermore, we are grateful to Dorothé Krug and Barbara Elghahwagi for their assistance in data acquisition. This study was supported by a grant of the Köln Fortune Program of the Medical Faculty at the University of Cologne to L.S. and by a grant “Other Minds” of the German Ministry of Research and Education to K.V.Peer reviewedPreprin

    Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons W+/-, II

    Full text link
    We do the spectral analysis of the Hamiltonian for the weak leptonic decay of the gauge bosons W+/-. Using Mourre theory, it is shown that the spectrum between the unique ground state and the first threshold is purely absolutely continuous. Neither sharp neutrino high energy cutoff nor infrared regularization are assumed.Comment: To appear in Ann. Henri Poincar\'

    Trigonal Symmetry Breaking and its Electronic Effects in Two-Dimensional Dihalides and Trihalides

    Full text link
    We study the consequences of the approximately trigonal (D3dD_{3d}) point symmetry of the transition metal (M) site in two-dimensional van der Waals MX2_2 dihalides and MX3_3 trihalides. The trigonal symmetry leads to a 2-2-1 orbital splitting of the transition metal dd shell, which may be tuned by the interlayer distance, and changes in the ligand-ligand bond lengths. Orbital order coupled to various lower symmetry lattice modes may lift the remaining orbital degeneracies, and we explain how these may support unique electronic states using ZrI2_2 and CuCl2_2 as examples, and offer a brief overview of possible electronic configurations in this class of materials. By building and analysing Wannier models adapted to the appropriate symmetry we examine how the interplay among trigonal symmetry, electronic correlation effects, and pp-dd orbital charge transfer leads to insulating, orbitally polarized magnetic and/or orbital-selective Mott states. Our work establishes a rigorous framework to understand, control, and tune the electronic states in low-dimensional correlated halides. Our analysis shows that trigonal symmetry and its breaking is a key feature of the 2D halides that needs to be accounted for in search of novel electronic states in materials ranging from CrI3_3 to α\alpha-RuCl3_3

    Interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras

    Full text link
    We introduce the concept of quasi-coincidence of a fuzzy interval value with an interval valued fuzzy set. By using this new idea, we introduce the notions of interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras and investigate some of their related properties. Some characterization theorems of these generalized interval valued fuzzy filters are derived. The relationship among these generalized interval valued fuzzy filters of pseudo BLBL-algebras is considered. Finally, we consider the concept of implication-based interval valued fuzzy implicative filters of pseudo BLBL-algebras, in particular, the implication operators in Lukasiewicz system of continuous-valued logic are discussed

    Localizations at infinity and essential spectrum of quantum Hamiltonians: I. General theory

    Full text link
    We isolate a large class of self-adjoint operators H whose essential spectrum is determined by their behavior at large x and we give a canonical representation of their essential spectrum in terms of spectra of limits at infinity of translations of H. The configuration space is an arbitrary abelian locally compact not compact group.Comment: 63 pages. This is the published version with several correction

    A gene regulatory network armature for T lymphocyte specification

    Get PDF
    Choice of a T lymphoid fate by hematopoietic progenitor cells depends on sustained Notch–Delta signaling combined with tightly regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification, tests of the short-term Notch dependence of these gene expression changes, and analyses of the effects of overexpression of two essential transcription factors, namely PU.1 and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T cell precursors progress from primitive multipotency to T lineage commitment. Our analyses reveal separate contributions of Notch signaling, GATA-3 activity, and down-regulation of PU.1. Using BioTapestry (www.BioTapestry.org), the results have been assembled into a draft gene regulatory network for the specification of T cell precursors and the choice of T as opposed to myeloid/dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfi1 against Egr-2 and of TCF-1 against PU.1 as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose dependence of GATA-3 effects, the gene-specific modulation of PU.1 activity based on Notch activity, the lack of direct opposition between PU.1 and GATA-3, and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression
    corecore