3 research outputs found

    Federated System for Transport Mode Detection

    No full text
    Data on transport usage is important in a wide range of areas. These data are often obtained manually through costly and inaccurate interviews. In the last decade, several researchers explored the use of smartphone sensors for the automatic detection of transport modes. However, such works have focused on developing centralized machine learning mechanisms. This centralized approach requires user data to be transferred to a central server and, therefore, does not satisfy a transport mode detection mechanism’s practical response time and privacy needs. This research presents the Federated System for Transport Mode Detection (FedTM). The main contribution of FedTM is exploring Federated Learning on transport mode detection using smartphone sensors. In FedTM, both the training and inference process is moved to the client side (smartphones), reducing response time and increasing privacy. The FedTM was designed using a Neural Network for the classification task and obtained an average accuracy of 80.6% in three transport classes (cars, buses and motorcycles). Other contributions of this work are: (i) The use of data collected only on the curves of the route. Such reduction in data collection is important, given that the system is decentralized and the training and inference phases take place on smartphones with less computational capacity. (ii) FedTM and centralized classifiers are compared with regard to execution time and detection performance. Such a comparison is important for measuring the pros and cons of using Federated Learning in the transport mode detection task

    Methodology for Forensics Data Reconstruction on Mobile Devices with Android Operating System Applying In-System Programming and Combination Firmware

    Get PDF
    This paper proposes a new forensic analysis methodology that combines processes, techniques, and tools for physical and logical data acquisition from mobile devices. The proposed methodology allows an overview of the use of the In-System Programming (ISP) technique with the usage of Combination Firmware, aligned with specific collection and analysis processes. The carried out experiments show that the proposed methodology is convenient and practical and provides new possibilities for data acquisition on devices that run the Android Operating System with advanced protection mechanisms. The methodology is also feasible in devices compatible with the usage of Joint Test Action Group (JTAG) techniques and which use Embedded Multimedia Card (eMMC) or Embedded Multi-Chip Package (eMCP) as main memory. The techniques included in the methodology are effective on encrypted devices, in which the JTAG and Chip-Off techniques prove to be ineffective, especially on those that have an unauthorized access protection mechanism enabled, such as lock screen password, blocked bootloader, and Factory Reset Protection (FRP) active. Studies also demonstrate that data preservation and integrity are maintained, which is critical to a digital forensic process
    corecore