194 research outputs found

    Phosphodiesterase 7 as a therapeutic target – Where are we now?

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyse the intracellular second messengers cAMP and cGMP to their inactive forms 5’AMP and 5’GMP. Some members of the PDE family display specificity towards a single cyclic nucleotide messenger, and PDE4, PDE7, and PDE8 specifically hydrolyse cAMP. While the role of PDE4 and its use as a therapeutic target have been well studied, less is known about PDE7 and PDE8. This review aims to collate the present knowledge on human PDE7 and outline its potential use as a therapeutic target. Human PDE7 exists as two isoforms PDE7A and PDE7B that display different expression patterns but are predominantly found in the central nervous system, immune cells, and lymphoid tissue. As a result, PDE7 is thought to play a role in T cell activation and proliferation, inflammation, and regulate several physiological processes in the central nervous system, such as neurogenesis, synaptogenesis, and long-term memory formation. Increased expression and activity of PDE7 has been detected in several disease states, including neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's disease, autoimmune diseases such as multiple sclerosis and COPD, and several types of cancer. Early studies have shown that administration of PDE7 inhibitors may ameliorate the clinical state of these diseases. Targeting PDE7 may therefore provide a novel therapeutic strategy for targeting a broad range of disease and possibly provide a complementary alternative to inhibitors of other cAMP-selective PDEs, such as PDE4, which are severely limited by their side-effects

    Editorial

    Get PDF
    Denver, Theological Comments Will the Decision on Fellowship at Denver Make a Difference? Fellowship and the Younger Sister Churches Synodical Conventions: A Theological Perspectiv

    Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism

    Get PDF
    © 2015 Wiley Periodicals, Inc. Acknowledgement Grant sponsor: State of Lower Saxony-Israel Research Cooperation; Grant number: ZN2035; Grant sponsor:German Research Council; Grant number: SFB/TRR43 and FOR1336; Grant sponsor: Parkinson UK; Grant number: K-1001; Grant sponsor: ProFutura Program (University of Gottingen); Grant sponsor: Else Kroner Fresenius Stiftung;Grant number: A69/2010; Grant sponsor: DFG; Grant number: WE 3547/4–1; Grant sponsor: US National Multiple Sclerosis Society; Grant numbers: NMSS; PP 1660. The authors thank Elke Pralle, Susanne Kiecke and Caroline Jaß (University of Gottingen) for excellent technical assistance.Peer reviewedPostprin

    PRH/Hex: an oligomeric transcription factor and ,ultifunctional regulator of cell fate.

    Get PDF
    The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a critical regulator of vertebrate development. PRH is able to regulate cell proliferation and differentiation and is required for the formation of the vertebrate body axis, the haematopoietic and vascular systems and the formation of many vital organs. PRH is a DNAbinding protein that can repress and activate the transcription of its target genes using multiple mechanisms. In addition, PRH can regulate the nuclear transport of specific mRNAs making PRH a member of a select group of proteins that control gene expression at the transcriptional and translational levels. Recent biophysical analysis of the PRH protein has shown that it forms homo-oligomeric complexes in vivo and in vitro and that the proline-rich region of PRH forms a novel dimerization interface. Here we will review the current literature on PRH and discuss the complex web of interactions centred on this multifunctional protein

    Finding Our Way through Phenotypes

    Get PDF
    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility

    PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix.

    Get PDF
    During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentiation to uncover a new mechanism for PI3K signalling that is required for endoderm specification. We found that PI3K signalling promotes the transition from naïve endoderm precursors into committed anterior endoderm. PI3K promoted commitment via an atypical activity that delimited epithelial-to-mesenchymal transition (EMT). Akt1 transduced this activity via modifications to the extracellular matrix (ECM) and appropriate ECM could itself induce anterior endodermal identity in the absence of PI3K signalling. PI3K/Akt1-modified ECM contained low levels of Fibronectin (Fn1) and we found that Fn1 dose was key to specifying anterior endodermal identity in vivo and in vitro. Thus, localized PI3K activity affects ECM composition and ECM in turn patterns the endoderm. DOI: http://dx.doi.org/10.7554/eLife.00806.00
    corecore