7,350 research outputs found
Microbial identification by mass cataloging
BACKGROUND: The public availability of over 180,000 bacterial 16S ribosomal RNA (rRNA) sequences has facilitated microbial identification and classification using hybridization and other molecular approaches. In their usual format, such assays are based on the presence of unique subsequences in the target RNA and require a prior knowledge of what organisms are likely to be in a sample. They are thus limited in generality when analyzing an unknown sample. Herein, we demonstrate the utility of catalogs of masses to characterize the bacterial 16S rRNA(s) in any sample. Sample nucleic acids are digested with a nuclease of known specificity and the products characterized using mass spectrometry. The resulting catalogs of masses can subsequently be compared to the masses known to occur in previously-sequenced 16S rRNAs allowing organism identification. Alternatively, if the organism is not in the existing database, it will still be possible to determine its genetic affinity relative to the known organisms. RESULTS: Ribonuclease T(1 )and ribonuclease A digestion patterns were calculated for 1,921 complete 16S rRNAs. Oligoribonucleotides generated by RNase T(1 )of length 9 and longer produce sufficient diversity of masses to be informative. In addition, individual fragments or combinations thereof can be used to recognize the presence of specific organisms in a complex sample. In this regard, 140 strains out of 1,921 organisms (7.3%) could be identified by the presence of a unique RNase T(1)-generated oligoribonucleotide mass. Combinations of just two and three oligoribonucleotide masses allowed 54% and 72% of the specific strains to be identified, respectively. An initial algorithm for recovering likely organisms present in complex samples is also described. CONCLUSION: The use of catalogs of compositions (masses) of characteristic oligoribonucleotides for microbial identification appears extremely promising. RNase T(1 )is more useful than ribonuclease A in generating characteristic masses, though RNase A produces oligomers which are more readily distinguished due to the large mass difference between A and G. Identification of multiple species in mixtures is also feasible. Practical applicability of the method depends on high performance mass spectrometric determination, and/or use of methods that increase the one dalton (Da) mass difference between uracil and cytosine
Bacterial genotyping by 16S rRNA mass cataloging
BACKGROUND: It has recently been demonstrated that organism identifications can be recovered from mass spectra using various methods including base-specific fragmentation of nucleic acids. Because mass spectrometry is extremely rapid and widely available such techniques offer significant advantages in some applications. A key element in favor of mass spectrometric analysis of RNA fragmentation patterns is that a reference database for analysis of the results can be generated from sequence information. In contrast to hybridization approaches, the genetic affinity of any unknown isolate can in principle be determined within the context of all previously sequenced 16S rRNAs without prior knowledge of what the organism is. In contrast to the original RNase T(1 )cataloging method, when digestion products are analyzed by mass spectrometry, products with the same base composition cannot be distinguished. Hence, it is possible that organisms that are not closely related (having different underlying sequences) might be falsely identified by mass spectral coincidence. We present a convenient spectral coincidence function for expressing the degree of similarity (or distance) between any two mass-spectra. Trees constructed using this function are consistent with those produced by direct comparison of primary sequences, demonstrating that the inherent degeneracy in mass spectrometric analysis of RNA fragments does not preclude correct organism identification. RESULTS: Neighbor-joining trees for important bacterial pathogens were generated using distances based on mass spectrometric observables and the spectral coincidence function. These trees demonstrate that most pathogens will be readily distinguished using mass spectrometric analyses of RNA digestion products. A more detailed, genus-level analysis of pathogens and near relatives was also performed, and it was found that assignments of genetic affinity were consistent with those obtained by direct sequence comparisons. Finally, typical values of the coincidence between organisms were also examined with regard to phylogenetic level and sequence variability. CONCLUSION: Cluster analysis based on comparison of mass spectrometric observables using the spectral coincidence function is an extremely useful tool for determining the genetic affinity of an unknown bacterium. Additionally, fragmentation patterns can determine within hours if an unknown isolate is potentially a known pathogen among thousands of possible organisms, and if so, which one
Confederate invoice of subsistence stores ( Form 22 ) signed by Thomas Stonewall Jackson, April 1, 1863.
Jackson signs as Major General just weeks before his death. Subsistence stores or provisions in this case consist of bulk amounts of bacon, flour, rice, soap, salt, and vinegar. Countersigned by Major W.J. Hawks and Major George W. T. Kearsley. Dated April 1st, 1863.https://digitalcommons.wofford.edu/littlejohnmss/1232/thumbnail.jp
Plasmonic light yield enhancement of a liquid scintillator
We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications
DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli
Background: Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis. Results: Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant of the Vibrio proteolyticus 5S rRNA gene in place of helix III - loop C segment of the original 5S rRNA. After transformation into Escherichia coli, the chimeric RNA (3譸en aRNA) was expressed constitutively from E. coli rrnB P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 5S rRNA. A novel method relying on liquid solid partitioning of cellular constituents was developed for isolation of total RNA from bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin affinity chromatography for reuse. Conclusions:The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs in vivo using a "5S rRNA scaffold" strategy is demonstrated. The approach provides a route towards an economical method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use in clinical and biomedical research
SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers
Functionalized colloidal nanoparticles for SERS serve as a promising multifunctional assay component for blood biomarker detection. Proper design of these nanoprobes through conjugation to spectral tags, protective polymers, and sensing ligands can provide experimental control over the sensitivity, range, reproducibility, particle stability, and integration with biorecognition assays. Additionally, the optical properties and degree of electromagnetic SERS signal enhancement can be altered and monitored through tuning the nanoparticle shape, size, material and the colloid's local surface plasmon resonance (LSPR). Aptamers, synthetic affinity ligands derived from nucleic acids, provide a number of advantages for biorecognition of small molecules and toxins with low immunogenicity. DNA aptamers are simpler and more economical to produce at large scale, are capable of greater specificity and affinity than antibodies, are easily tailored to specific functional groups, can be used to tune inter-particle distance and shift the LSPR, and their intrinsic negative charge can be utilized for additional particle stability.1,2 Herein, a "turn-off" competitive binding assay platform involving two different plasmonic nanoparticles for the detection of the toxin bisphenol A (BPA) using SERS is presented. A derivative of the toxin is immobilized onto a silver coated magnetic nanoparticle (Ag@MNP), and a second solid silver nanoparticle (AgNP) is functionalized with the BPA aptamer and a Raman reporter molecule (RRM). The capture (Ag@MNP) and probe (AgNP) particles are mixed and the aptamer binding interaction draws the nanoparticles closer together, forming an assembly that results in an increased SERS signal intensity. This aptamer mediated assembly of the two nanoparticles results in a 100x enhancement of the SERS signal intensity from the RRM. These pre-bound aptamer/nanoparticle conjugates were then exposed to BPA in free solution and the competitive binding event was monitored by the decrease in SERS intensity
DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli
<p>Abstract</p> <p>Background</p> <p>Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis.</p> <p>Results</p> <p>Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant of the <it>Vibrio proteolyticus </it>5S rRNA gene in place of helix III - loop C segment of the original 5S rRNA. After transformation into <it>Escherichia coli</it>, the chimeric RNA (3×<it>pen </it>aRNA) was expressed constitutively from <it>E. coli rrnB </it>P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 5S rRNA. A novel method relying on liquid-solid partitioning of cellular constituents was developed for isolation of total RNA from bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin affinity chromatography for reuse.</p> <p>Conclusions</p> <p>The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs <it>in vivo </it>using a "5S rRNA scaffold" strategy is demonstrated. The approach provides a route towards an economical method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use in clinical and biomedical research.</p
The ASCA X-Ray Spectrum Of The Broad-Line Radio Galaxy Pictor A: A Simple Power Law With No Fe K-alpha Line
We present the X-ray spectrum of the broad-line radio galaxy Pictor A as
observed by ASCA in 1996. The main objective of the observation was to detect
and study the profiles of the Fe~K lines. The motivation was the fact
that the Balmer lines of this object show well-separated displaced peaks,
suggesting an origin in an accretion disk. The 0.5-10 keV X-ray spectrum is
described very well by a model consisting of a power law of photon index 1.77
modified by interstellar photoelectric absorption. We find evidence for neither
a soft nor a hard (Compton reflection) excess. More importantly, we do not
detect an Fe K-alpha line, in marked contrast with the spectra of typical
Seyfert galaxies and other broad-line radio galaxies observed by ASCA. The
99%-confidence upper limit on the equivalent width of an unresolved line at a
rest energy of 6.4 keV is 100 eV, while for a broad line (FWHM of approximately
60,000 km/s) the corresponding upper limit is 135 eV. We discuss several
possible explanations for the weakness of the Fe K-alpha line in Pictor~A
paying attention to the currently available data on the properties of Fe
K-alpha lines in other broad-line radio galaxies observed by ASCA. We speculate
that the absence of a hard excess (Compton reflection) or an Fe K-alpha line is
an indication of an accretion disk structure that is different from that of
typical Seyfert galaxies, e.g., the inner disk may be an ion torus.Comment: To appear in the Astrophysical Journal (18 pages, including 8
postscript figures; uses psfig.tex
- …