56,233 research outputs found
Establishing the behavioural limits for countershaded camouflage
Countershading is a ubiquitous patterning of animals whereby the side that typically faces the highest illumination is darker. When tuned to specific lighting conditions and body orientation with respect to the light field, countershading minimizes the gradient of light the body reflects by counterbalancing shadowing due to illumination, and has therefore classically been thought of as an adaptation for visual camouflage. However, whether and how crypsis degrades when body orientation with respect to the light field is non-optimal has never been studied. We tested the behavioural limits on body orientation for countershading to deliver effective visual camouflage. We asked human participants to detect a countershaded target in a simulated three-dimensional environment. The target was optimally coloured for crypsis in a reference orientation and was displayed at different orientations. Search performance dramatically improved for deviations beyond 15 degrees. Detection time was significantly shorter and accuracy significantly higher than when the target orientation matched the countershading pattern. This work demonstrates the importance of maintaining body orientation appropriate for the displayed camouflage pattern, suggesting a possible selective pressure for animals to orient themselves appropriately to enhance crypsis
Is countershading camouflage robust to lighting change due to weather?
Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering ‘optimal’ camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a ‘generic’ predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target ‘prey’. We set these items in two light environments: strongly directional ‘sunny’ and more diffuse ‘cloudy’. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage
Two-probe theory of scanning tunneling microscopy of single molecules: Zn(II)-etioporphyrin on alumina
We explore theoretically the scanning tunneling microscopy of single
molecules on substrates using a framework of two local probes. This framework
is appropriate for studying electron flow in tip/molecule/substrate systems
where a thin insulating layer between the molecule and a conducting substrate
transmits electrons non-uniformly and thus confines electron transmission
between the molecule and substrate laterally to a nanoscale region
significantly smaller in size than the molecule. The tip-molecule coupling and
molecule-substrate coupling are treated on the same footing, as local probes to
the molecule, with electron flow modelled using the Lippmann-Schwinger Green
function scattering technique. STM images are simulated for various positions
of the stationary (substrate) probe below a Zn(II)-etioporphyrin I molecule. We
find that these images have a strong dependence on the substrate probe
position, indicating that electron flow can depend strongly on both tip
position and the location of the dominant molecule-substrate coupling.
Differences in the STM images are explained in terms of the molecular orbitals
that mediate electron flow in each case. Recent experimental results, showing
STM topographs of Zn(II)-etioporphyrin I on alumina/NiAl(110) to be strongly
dependent on which individual molecule on the substrate is being probed, are
explained using this model. A further experimental test of the model is also
proposed.Comment: Physical Review B, in pres
Laser-induced spin protection and switching in a specially designed magnetic dot: A theoretical investigation
Most laser-induced femtosecond magnetism investigations are done in magnetic
thin films. Nanostructured magnetic dots, with their reduced dimensionality,
present new opportunities for spin manipulation. Here we predict that if a
magnetic dot has a dipole-forbidden transition between the lowest occupied
molecular orbital (LUMO) and the highest unoccupied molecular orbital (HOMO),
but a dipole-allowed transition between LUMO+1 and HOMO, electromagnetically
inducedtransparency can be used to prevent ultrafast laser-induced spin
momentum reduction, or spin protection. This is realized through a strong dump
pulse to funnel the population into LUMO+1. If the time delay between the pump
and dump pulses is longer than 60 fs, a population inversion starts and spin
switching is achieved. Thesepredictions are detectable experimentally.Comment: 6 pages, three figur
Small-X Quarks at HERA Predict the Ultra High Energy Neutrino-Nucleon Cross Section
New structure function data at small Bjorken from HERA are used along
with next-to-leading order QCD evolution to predict a cross section for
charged-current interactions of ultrahigh energy neutrinos with nucleons. This
new result is over twice the size of previous estimates and has important
implications for cosmic ray experiments now underway as well as for KM3 arrays
(cubic kilometer-scale neutrino telescopes) now in the planning stages.Comment: KITCS94-9-1, 9 pages (REVTeX) plus 3 postscript figures all uuencode
- …