82 research outputs found

    Selective Photothermolysis of Cutaneous Pigmentation by Q-switched Nd: YAG Laser Pulses at 1064, 532. and 355nm

    Get PDF
    Exposure of skin to nanosecond-domain laser pulses affects the pigmentary system by a process called selective photothermolysis, in which melanosomes and pigmented cells are preferentially altered. Due to the broad absorption spectrum of melanin, this effect may occur with wavelengths that penetrate to vastly different depths within tissue, potentially producing different biologic responses. The effects of single near-ultraviolet (355nm), visible (532nm), and near infrared (1064nm) pulses of 10–12nsec duration were determined in guinea pig skin using gross, histologic, and electron microscopic observations. Threshold response in pigmented skin was a transient immediate ash-white discoloration, requiring 0.11, 0.20 and 1.0J/cm2, at 355, 532, and 1064 nm, respectively. At each wavelength, melanosomes were reputed within keratinocytes and melanocytes, with cytoplasmic and nuclear alterations. Delayed epidermal depigmentation occurred, followed by gradual repigmentation. Deep follicular cells were altered only at 532 and 1064 nm, which produced permanent leukotrichia. The action spectrum for threshold response was consistent with mechanisms implied by selective photothermolysis. These data may be useful for consideration of treatment for cutaneous pigmentation abnormalities or unwanted follicular pigmentation, or both

    Search for positively charged strangelets and other related results with E864 at the AGS

    Full text link
    We report on the latest results in the search for positively charged strangelets from E864's 96/97 run at the AGS with sensitivity of about 8×10−98\times 10^{-9} per central collision. This contribution also contains new results of a search for highly charged strangelets with Z=+3Z=+3. Production of light nuclei, such as 6He^6He and 6Li^6Li, is presented as well. Measurements of yields of these rarely produced isotopes near midrapidity will help constrain the production levels of strangelets via coalescence. E864 also measures antiproton production which includes decays from antihyperons. Comparisons with antiproton yields measured by E878 as a function of centrality indicate a large antihyperon-to-antiproton ratio in central collisions.Comment: 8 pages, 4 figures; Talk at SQM'98, Padova, Italy (July 20-24th, 1998

    Antideuteron yield at the AGS and coalescence implications

    Full text link
    We present Experiment 864's measurement of invariant antideuteron yields in 11.5A GeV/c Au + Pt collisions. The analysis includes 250 million triggers representing 14 billion 10% central interactions sampled for events with high mass candidates. We find (1/2 pi pt) d^(2)N/dydpt = 3.5 +/- 1.5 (stat.) +0.9,-0.5 (sys.) x 10^(-8) GeV^(-2)c^(2) for 1.8=0.35 GeV/c (y(cm)=1.6) and 3.7 +/- 2.7 (stat.) +1.4,-1.5 (sys.) x 10^(-8) GeV^(-2)c^(2) for 1.4=0.26 GeV/c, and a coalescence parameter B2-bar of 4.1 +/- 2.9 (stat.) +2.3,-2.4 (sys.) x 10^(-3) GeV^(2)c^(-3). Implications for the coalescence model and antimatter annihilation are discussed.Comment: 8 pages, 4 figures, Latex, submitted to Phys. Rev. Let

    Mass dependence of light nucleus production in ultrarelativistic heavy ion collisions

    Full text link
    Light nuclei can be produced in the central reaction zone via coalescence in relativistic heavy ion collisions. E864 at BNL has measured the production of ten light nuclei with nuclear number of A=1 to A=7 at rapidity y≃1.9y\simeq1.9 and pT/A≤300MeV/cp_{T}/A\leq300MeV/c. Data were taken with a Au beam of momentum of 11.5 A GeV/cGeV/c on a Pb or Pt target with different experimental settings. The invariant yields show a striking exponential dependence on nuclear number with a penalty factor of about 50 per additional nucleon. Detailed analysis reveals that the production may depend on the spin factor of the nucleus and the nuclear binding energy as well.Comment: (6 pages, 3 figures), some changes on text, references and figures' lettering. To be published in PRL (13Dec1999

    Antiproton Production in 11.5 A GeV/c Au+Pb Nucleus-Nucleus Collisions

    Full text link
    We present the first results from the E864 collaboration on the production of antiprotons in 10% central 11.5 A GeV/c Au+Pb nucleus collisions at the Brookhaven AGS. We report invariant multiplicities for antiproton production in the kinematic region 1.4<y<2.2 and 50<p_T<300 MeV/c, and compare our data with a first collision scaling model and previously published results from the E878 collaboration. The differences between the E864 and E878 antiproton measurements and the implications for antihyperon production are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review Letter

    Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    Full text link
    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover memorial edition

    Measurements of Light Nuclei Production in 11.5 A GeV/c Au+Pb Heavy-Ion Collisions

    Full text link
    We report on measurements by the E864 experiment at the BNL-AGS of the yields of light nuclei in collisions of Au(197) with beam momentum of 11.5 A GeV/c on targets of Pb(208) and Pt(197). The yields are reported for nuclei with baryon number A=1 up to A=7, and typically cover a rapidity range from y(cm) to y(cm)+1 and a transverse momentum range of approximately 0.1 < p(T)/A < 0.5 GeV/c. We calculate coalescence scale factors B(A) from which we extract model dependent source dimensions and collective flow velocities. We also examine the dependences of the yields on baryon number, spin, and isospin of the produced nuclei.Comment: 21 figures-to be published in Phys. Rev.

    Production of Λ3H^{3}_{\Lambda}H and Λ4H^{4}_{\Lambda}H in Central 11.5 GeV/c Au + Pt Heavy Ion Collisions

    Full text link
    We present measurements from BNL AGS Experiment E864 of the Λ3H^{3}_{\Lambda}H invariant multiplicity and of the 90% Confidence Level upper limit on the Λ4H^{4}_{\Lambda}H yield in central 11.5 A GeV/c Au + Pt collisions. The measurements span a rapidity range from center of mass, ycmy_{cm}, to ycmy_{cm}+1 and a transverse momentum range of 0.<pT≤1.50.< p_{T}\le 1.5 GeV/c. We compare these results with E864 measurements of stable light nuclei and particle unstable nuclei yields of the same baryon number. The implications of these results for the coalescence of strange clusters are discussed.Comment: 16 pages, 4 figures, 2 table

    Search for Strange Quark Matter Produced in Relativistic Heavy Ion Collisions

    Full text link
    We present the final results from Experiment 864 of a search for charged and neutral strange quark matter produced in interactions of 11.5 GeV/c per nucleon Au beams with Pt or Pb targets. Searches were made for strange quark matter with A>4. Approximately 30 billion 10% most central collisions were sampled and no strangelet states with A<100 were observed. We find 90% confidence level upper limits of approximately 10^{-8} per central collision for both charged and neutral strangelets. These limits are for strangelets with proper lifetimes greater than 50 ns. Also limits for H^{0}-d and pineut production are given. The above limits are compared with the predictions of various models. The yields of light nuclei from coalescence are measured and a penalty factor for the addition of one nucleon to the coalescing nucleus is determined. This is useful in gauging the significance of our upper limits and also in planning future searches for strange quark matter.Comment: 35 pages, 18 figures, submitted to Phys. Rev.
    • …
    corecore