480 research outputs found

    Mass dependence of light nucleus production in ultrarelativistic heavy ion collisions

    Full text link
    Light nuclei can be produced in the central reaction zone via coalescence in relativistic heavy ion collisions. E864 at BNL has measured the production of ten light nuclei with nuclear number of A=1 to A=7 at rapidity y1.9y\simeq1.9 and pT/A300MeV/cp_{T}/A\leq300MeV/c. Data were taken with a Au beam of momentum of 11.5 A GeV/cGeV/c on a Pb or Pt target with different experimental settings. The invariant yields show a striking exponential dependence on nuclear number with a penalty factor of about 50 per additional nucleon. Detailed analysis reveals that the production may depend on the spin factor of the nucleus and the nuclear binding energy as well.Comment: (6 pages, 3 figures), some changes on text, references and figures' lettering. To be published in PRL (13Dec1999

    Antideuteron yield at the AGS and coalescence implications

    Full text link
    We present Experiment 864's measurement of invariant antideuteron yields in 11.5A GeV/c Au + Pt collisions. The analysis includes 250 million triggers representing 14 billion 10% central interactions sampled for events with high mass candidates. We find (1/2 pi pt) d^(2)N/dydpt = 3.5 +/- 1.5 (stat.) +0.9,-0.5 (sys.) x 10^(-8) GeV^(-2)c^(2) for 1.8=0.35 GeV/c (y(cm)=1.6) and 3.7 +/- 2.7 (stat.) +1.4,-1.5 (sys.) x 10^(-8) GeV^(-2)c^(2) for 1.4=0.26 GeV/c, and a coalescence parameter B2-bar of 4.1 +/- 2.9 (stat.) +2.3,-2.4 (sys.) x 10^(-3) GeV^(2)c^(-3). Implications for the coalescence model and antimatter annihilation are discussed.Comment: 8 pages, 4 figures, Latex, submitted to Phys. Rev. Let

    Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    Full text link
    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover memorial edition

    Measurements of Light Nuclei Production in 11.5 A GeV/c Au+Pb Heavy-Ion Collisions

    Full text link
    We report on measurements by the E864 experiment at the BNL-AGS of the yields of light nuclei in collisions of Au(197) with beam momentum of 11.5 A GeV/c on targets of Pb(208) and Pt(197). The yields are reported for nuclei with baryon number A=1 up to A=7, and typically cover a rapidity range from y(cm) to y(cm)+1 and a transverse momentum range of approximately 0.1 < p(T)/A < 0.5 GeV/c. We calculate coalescence scale factors B(A) from which we extract model dependent source dimensions and collective flow velocities. We also examine the dependences of the yields on baryon number, spin, and isospin of the produced nuclei.Comment: 21 figures-to be published in Phys. Rev.

    Antiproton Production in 11.5 A GeV/c Au+Pb Nucleus-Nucleus Collisions

    Full text link
    We present the first results from the E864 collaboration on the production of antiprotons in 10% central 11.5 A GeV/c Au+Pb nucleus collisions at the Brookhaven AGS. We report invariant multiplicities for antiproton production in the kinematic region 1.4<y<2.2 and 50<p_T<300 MeV/c, and compare our data with a first collision scaling model and previously published results from the E878 collaboration. The differences between the E864 and E878 antiproton measurements and the implications for antihyperon production are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review Letter

    Restoration of disk height through non-surgical spinal decompression is associated with decreased discogenic low back pain: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because previous studies have suggested that motorized non-surgical spinal decompression can reduce chronic low back pain (LBP) due to disc degeneration (discogenic low back pain) and disc herniation, it has accordingly been hypothesized that the reduction of pressure on affected discs will facilitate their regeneration. The goal of this study was to determine if changes in LBP, as measured on a verbal rating scale, before and after a 6-week treatment period with non-surgical spinal decompression, correlate with changes in lumbar disc height, as measured on computed tomography (CT) scans.</p> <p>Methods</p> <p>A retrospective cohort study of adults with chronic LBP attributed to disc herniation and/or discogenic LBP who underwent a 6-week treatment protocol of motorized non-surgical spinal decompression via the DRX9000 with CT scans before and after treatment. The main outcomes were changes in pain as measured on a verbal rating scale from 0 to 10 during a flexion-extension range of motion evaluation and changes in disc height as measured on CT scans. Paired t-test or linear regression was used as appropriate with p < 0.05 considered to be statistically significant.</p> <p>Results</p> <p>We identified 30 patients with lumbar disc herniation with an average age of 65 years, body mass index of 29 kg/m<sup>2</sup>, 21 females and 9 males, and an average duration of LBP of 12.5 weeks. During treatment, low back pain decreased from 6.2 (SD 2.2) to 1.6 (2.3, p < 0.001) and disc height increased from 7.5 (1.7) mm to 8.8 (1.7) mm (p < 0.001). Increase in disc height and reduction in pain were significantly correlated (r = 0.36, p = 0.044).</p> <p>Conclusions</p> <p>Non-surgical spinal decompression was associated with a reduction in pain and an increase in disc height. The correlation of these variables suggests that pain reduction may be mediated, at least in part, through a restoration of disc height. A randomized controlled trial is needed to confirm these promising results.</p> <p>Clinical trial registration number</p> <p>NCT00828880</p
    corecore