31 research outputs found

    Comparative Analysis of B-Cell Receptor Repertoires Induced by Live Yellow Fever Vaccine in Young and Middle-Age Donors

    Get PDF
    Age-related changes can significantly alter the state of adaptive immune system and often lead to attenuated response to novel pathogens and vaccination. In present study we employed 5′RACE UMI-based full length and nearly error-free immunoglobulin profiling to compare plasma cell antibody repertoires in young (19–26 years) and middle-age (45–58 years) individuals vaccinated with a live yellow fever vaccine, modeling a newly encountered pathogen. Our analysis has revealed age-related differences in the responding antibody repertoire ranging from distinct IGH CDR3 repertoire properties to differences in somatic hypermutation intensity and efficiency and antibody lineage tree structure. Overall, our findings suggest that younger individuals respond with a more diverse antibody repertoire and employ a more efficient somatic hypermutation process than elder individuals in response to a newly encountered pathogen

    Bioengineered System for High Throughput Screening of Kv1 Ion Channel Blockers

    Full text link
    Screening drug candidates for their affinity and selectivity for a certain binding site is a crucial step in developing targeted therapy. Here, we created a screening assay for receptor binding that can be easily scaled up and automated for the high throughput screening of Kv channel blockers. It is based on the expression of the KcsA-Kv1 hybrid channel tagged with a fluorescent protein in the E. coli membrane. In order to make this channel accessible for the soluble compounds, E. coli were transformed into spheroplasts by disruption of the cellular peptidoglycan envelope. The assay was evaluated using a hybrid KcsA-Kv1.3 potassium channel tagged with a red fluorescent protein (TagRFP). The binding of Kv1.3 channel blockers was measured by flow cytometry either by using their fluorescent conjugates or by determining the ability of unconjugated compounds to displace fluorescently labeled blockers with a known affinity. A fraction of the occupied receptor was calculated with a dedicated pipeline available as a Jupyter notebook. Measured binding constants for agitoxin-2, charybdotoxin and kaliotoxin were in firm agreement with the earlier published data. By using a mid-range flow cytometer with manual sample handling, we measured and analyzed up to ten titration curves (eight data points each) in one day. Finally, we considered possibilities for multiplexing, scaling and automation of the assay

    Cycloimide bacteriochlorin p derivatives: Photodynamic properties and cellular and tissue distribution

    Get PDF
    Reactive oxygen species generated by photosensitizers are efficacious remedy for tumor eradication. Eleven cycloimide derivatives of bacteriochlorin p (CIBCs) with different N-substituents at the fused imide ring and various substituents replacing the 3-acetyl group were evaluated as photosensitizers with special emphasis on structure–activity relationships. The studied CIBCs absorb light within a tissue transparency window (780–830 nm) and possess high photostability at prolonged light irradiation. The most active derivatives are 300-fold more phototoxic toward HeLa and A549 cells than the clinically used photosensitizer Photogem due to the substituents that improve intracellular accumulation (distribution ratio of 8–13) and provide efficient photoinduced singlet oxygen generation (quantum yields of 0.54–0.57). The substituents predefine selective CIBC targeting to lipid droplets, Golgi apparatus, and lysosomes or provide mixed lipid droplets and Golgi apparatus localization in cancer cells. Lipid droplets and Golgi apparatus are critically sensitive to photoinduced damage. The average lethal dose of CIBC-generated singlet oxygen per volume unit of cell was estimated to be 0.22 mM. Confocal fluorescence analysis of tissue sections of tumor-bearing mice revealed the features of tissue distribution of selected CIBCs and, in particular, their ability to accumulate in tumor nodules and surrounding connective tissues. Considering the short-range action of singlet oxygen, these properties of CIBCs are prerequisite to efficient antitumor photodynamic therapy

    FLIM of NAD(P)H in Lymphatic Nodes Resolves T-Cell Immune Response to the Tumor

    Full text link
    Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells. The purpose of this work was to test whether FLIM can resolve metabolic alterations that accompany T-cell reactivation to the tumors. The study was carried out on C57Bl/6 FoxP3-EGFP mice bearing B16F0 melanoma. Autofluorescence of the immune cells in fresh lymphatic nodes (LNs) was investigated. It was found that fluorescence lifetime parameters of nicotinamide adenine dinucleotide (phosphate) NAD(P)H are sensitive to tumor development. Effector T-cells in the LNs displayed higher contribution of free NADH, the form associated with glycolysis, in all tumors and the presence of protein-bound NADPH, associated with biosynthetic processes, in the tumors of large size. Flow cytometry showed that the changes in the NADH fraction of the effector T-cells correlated with their activation, while changes in NADPH correlated with cell proliferation. In conclusion, FLIM of NAD(P)H in fresh lymphoid tissue is a powerful tool for assessing the immune response to tumor development

    Data supporting that adipose-derived mesenchymal stem/stromal cells express angiotensin II receptors in situ and in vitro

    Full text link
    This article contains results of analyses of angiotensin II receptors expression in human adipose tissue and stem/stromal cells isolated from adipose tissue. We also provide here data regarding the effect of angiotensin II on intracellular calcium mobilization in adipose tissue derived stem/stromal cells (ADSCs). Discussion of the data can be found in (Sysoeva et al., 2017) [1]

    Nox4 and duox1/2 mediate redox activation of mesenchymal cell migration by PDGF

    Full text link
    Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt

    Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Full text link
    Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS). Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs). We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII) receptor type 1 (AT1). Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2), which was responsible for increased adipose competency of this ADSC subpopulation

    Expression profile and silencing of NADPH-oxidases in mesenchymal cells.

    Full text link
    <p>(<b>A</b>)–(<b>B</b>), RT-PCR of NADPH-oxidases in 3T3 fibroblasts and MSC, respectively. Nox5 was not assessed in 3T3 fibroblasts, because it is absent in these cells [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0154157#pone.0154157.ref030" target="_blank">30</a>]. (<b>C</b>)–(<b>D</b>), 3T3 fibroblasts were stably infected by shRNAs to Nox4 or Duox1 and analyzed for corresponding mRNA (<b>C</b>) and protein expression (<b>D</b>). The graph shows mRNA expression levels normalized to those in cells expressing scrambled shRNA; (*) p < 0.05 as compared to scrambled controls in 3 independent experiments. (<b>E</b>)–(<b>F</b>), 3T3 fibroblasts were transiently transfected by siRNAs to Duox1 or Duox2 and analyzed for expression of mRNA in 3 independent experiments (<b>E</b>) and Nox4 and Duox1/2 proteins in 2 experiments (<b>F</b>). The mRNA expression levels were normalized to those in cells treated with non-targeting (NT) siRNA; (*) p < 0.05 as compared to NT controls. The western blots are typical of 2 experiments. (<b>G</b>)–(<b>H</b>), MSC were transiently transfected by siRNAs to Nox4, Duox1 or Duox2, and analyzed for mRNA in 3 independent experiments (<b>G</b>), and Nox4 protein expression in 2 experiments (<b>H</b>). The mRNA expression levels were normalized to those in NT controls; (*) p < 0.05 as compared to the NT controls. In this case Duox1/2 protein expression was not significantly altered by corresponding siRNAs (data not shown).</p
    corecore