945 research outputs found

    Evaluation of Body Composition and Somatotype Characteristics of Male

    Get PDF
    In an effort to describe the physique and body composition associated with performance of University level male track and field athlete of India, this study was conducted on 93 track and field athletes from South India, comprised of 22 sprinters (100 and 200 mts), mean age 19.5 years, height 172.1cm and weight 68.2 kg, 20 middle distance runners (800 and 1500 mts), mean age 19 years,  height 166.8cm and weight 62.5 kg, 16 long distance runners (5000 and 10000 mts), mean age 18.7 years,  height 167.2cm and weight 62.1kg, 20 throwers, (shot, discus and hammer throw), mean age 19 years,  height 170.8cm and weight 72.6 kg and Jumpers (High, long and triple jump), mean age 18.3 years,  height 169.9cm,  weight 64.1kg.  Besides height and weight, six skinfolds (triceps, chest, subscapular, abdomen, suprailiac and calf), two bicondylar breadths (humerus and femur) and two girths (biceps and calf) were measured. Somatotype evaluations were made according to Heath & Carter method. Percent body fat was assessed using equation prescribed by Berzerk et al. (1963). BMI was calculated as body mass divided by square of height (kg/m2). The somatochart indicated that sprinters and middle distance runners are ectomorphic mesomorphs, long distance runners are mesomorph ectomorphs while throwers are endomorphic mesomorphs. The jumpers fell into the somatotype category of balanced mesomorphs. Among all groups body fat percentage is lowest in sprinters (6.23±.83%) and highest in throwers (7.38±.85%). This was reflected in their endomorphic components which is lowest in sprinters (2.53±.0.45) and highest in throwers (3.39±0.65). Ectomorphic component is highly marked in long distance runners (3.56±0.65) while mesomophy was highest in sprinters (4.31±0.91). Throwers have significantly higher values of skinfolds than other groups. Compared to their overseas counterparts, the athletes of both track and field events in the present study exhibited greater endomorphic values. The present data will serve as a reference standard for the anthropometry and body composition of Indian track and field athletes. Â

    Differential induction of chitinase in Piper colubrinum in response to inoculation with Phytophthora capsici, the cause of foot rot in black pepper

    Get PDF
    AbstractPlant chitinases have been of particular interest since they are known to be induced upon pathogen invasion. Inoculation of Piper colubrinum leaves with the foot rot fungus, Phytophthora capsici leads to increase in chitinase activity. A marked increase in chitinase activity in the inoculated leaves was observed, with the maximum activity after 60h of inoculation and gradually decreased thereafter. Older leaves showed more chitinase activity than young leaves. The level of chitinase in black pepper (Piper nigrum L.) upon inoculation was found to be substantially high when compared to P. colubrinum. RT–PCR using chitinase specific primers revealed differential accumulation of mRNA in P. colubrinum leaves inoculated with P. capsici. However, hyphal extension assays revealed no obvious differences in the ability of the protein extracts to inhibit growth of P. capsici in vitro

    Double-Logarithmic Two-Loop Self-Energy Corrections to the Lamb Shift

    Get PDF
    Self-energy corrections involving logarithms of the parameter Zalpha can often be derived within a simplified approach, avoiding calculational difficulties typical of the problematic non-logarithmic corrections (as customary in bound-state quantum electrodynamics, we denote by Z the nuclear charge number, and by alpha the fine-structure constant). For some logarithmic corrections, it is sufficient to consider internal properties of the electron characterized by form factors. We provide a detailed derivation of related self-energy ``potentials'' that give rise to the logarithmic corrections; these potentials are local in coordinate space. We focus on the double-logarithmic two-loop coefficient B_62 for P states and states with higher angular momenta in hydrogenlike systems. We complement the discussion by a systematic derivation of B_62 based on nonrelativistic quantum electrodynamics (NRQED). In particular, we find that an additional double logarithm generated by the loop-after-loop diagram cancels when the entire gauge-invariant set of two-loop self-energy diagrams is considered. This double logarithm is not contained in the effective-potential approach.Comment: 14 pages, 1 figure; references added and typographical errors corrected; to appear in Phys. Rev.

    Extra-dimensional cosmology with domain-wall branes

    Full text link
    We show how to define a consistent braneworld cosmology in a model in which the brane is constructed as a field-theoretic domain wall of finite thickness. The Friedmann, Robertson-Walker metric is recovered in the region of the brane, but, remarkably, with scale factor that depends on particle energy and on particle species, constituting a breakdown of the weak equivalence principle on sufficiently small scales. This unusual effect comes from the extended nature of particles confined to a domain-wall brane, and the fact that they feel an "average" of the bulk spacetime. We demonstrate how to recover the standard results of brane cosmology in the infinitely-thin brane limit, and comment on how our results have the potential to place bounds on parameters such as the thickness of domain-wall braneworlds.Comment: 23 pages; v2 has additional references and reflects journal versio

    A first-principles study of oxygen vacancy pinning of domain walls in PbTiO3

    Full text link
    We have investigated the interaction of oxygen vacancies and 180-degree domain walls in tetragonal PbTiO3 using density-functional theory. Our calculations indicate that the vacancies do have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti-O-Ti bonds, and attempts to model the results with simple continuum models are discussed.Comment: 8 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_dw/index.htm

    Energy Flow in Interjet Radiation

    Get PDF
    We study the distribution of transverse energy, Q_Omega, radiated into an arbitrary interjet angular region, Omega, in high-p_T two-jet events. Using an approximation that emphasizes radiation directly from the partons that undergo the hard scattering, we find a distribution that can be extrapolated smoothly to Q_Omega=Lambda_QCD, where it vanishes. This method, which we apply numerically in a valence quark approximation, provides a class of predictions on transverse energy radiated between jets, as a function of jet energy and rapidity, and of the choice of the region Omega in which the energy is measured. We discuss the relation of our approximation to the radiation from unobserved partons of intermediate energy, whose importance was identified by Dasgupta and Salam.Comment: 26 pages, 8 eps figures. Revised to include a discussion of non-global logarithm

    Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics

    Get PDF
    Vaults are ribonucleoprotein particles with a distinct structure and a high degree of conservation between species. Although no function has been assigned to the complex yet, there is some evidence for a role of vaults in multidrug resistance. To confirm a direct relation between vaults and multidrug resistance, and to investigate other possible functions of vaults, we have generated a major vault protein (MVP/lung resistance-related protein) knockout mouse model. The MVP(-/-) mice are viable, healthy, and show no obvious abnormalities. We investigated the sensitivity of MVP(-/-) embryonic stem cells and bone marrow cells derived from the MVP-deficient mice to various cytostatic agents with different mechanisms of action. Neither the MVP(-/-) embryonic stem cells nor the MVP(-/-) bone marrow cells showed an increased sensitivity to any of the drugs examined, as compared with wild-type cells. Furthermore, the activities of the ABC-transporters P-glycoprotein, multidrug resistance-associated protein and breast cancer resistance protein were unaltered on MVP deletion in these cells. In addition, MVP wild-type and deficient mice were treated with the anthracycline doxorubicin. Both groups of mice responded similarly to the doxorubicin treatment. Our results suggest that MVP/vaults are not directly involved in the resistance to cytostatic agents

    One-loop corrections to the metastable vacuum decay

    Full text link
    We evaluate the one-loop prefactor in the false vacuum decay rate in a theory of a self interacting scalar field in 3+1 dimensions. We use a numerical method, established some time ago, which is based on a well-known theorem on functional determinants. The proper handling of zero modes and of renormalization is discussed. The numerical results in particular show that quantum corrections become smaller away from the thin-wall case. In the thin-wall limit the numerical results are found to join into those obtained by a gradient expansion.Comment: 31 pages, 7 figure

    Surface and interface modification of Zr/SiC interface by swift heavy ion irradiation

    Get PDF
    In this study thin Zr films (135 nm) were deposited on 6H-SiC substrate at room temperature by sputter deposition. The Zr/SiC couples were irradiated by 167 MeV Xe26+ ions at room temperature at fluences of 5.0 1012, 1.0 1013, 5.0 1013, 2.0 1014, 3.1 1014 and 6.3 1014 ions/cm2. The samples were analysed before and after irradiation using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM) and secondary electron microscopy (SEM). The surface morphology from SEM analysis revealed a homogeneous Zr surface which did not vary with increasing fluences of irradiation. AFM analysis revealed that the Rrms surface roughness did increase from the as-deposited value of 1.6 nm and then decrease at higher SHI irradiation fluences to 1.4 nm. RBS results indicate that interface mixing between Zr and SiC interface occurred and varied linearly with irradiation ion fluence. The value obtained for diffusivity of Zr shows that the mixing was due to interdiffusion across the interface during a transient melt phase according to the thermal spike model.http://www.elsevier.com/locate/nimb2016-07-01hb201

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,e′p)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,e′p)γ(e,e'p)\gamma to H(e,e′p)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.
    • …
    corecore