568 research outputs found
Recommended from our members
CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
Major advances in genome editing have recently been made possible with the development of the TALEN and CRISPR/Cas9 methods. The speed and ease of implementing these technologies has led to an explosion of mutant and transgenic organisms. A rate-limiting step in efficiently applying TALEN and CRISPR/Cas9 methods is the selection and design of targeting constructs. We have developed an online tool, CHOPCHOP (https://chopchop.rc.fas.harvard.edu), to expedite the design process. CHOPCHOP accepts a wide range of inputs (gene identifiers, genomic regions or pasted sequences) and provides an array of advanced options for target selection. It uses efficient sequence alignment algorithms to minimize search times, and rigorously predicts off-target binding of single-guide RNAs (sgRNAs) and TALENs. Each query produces an interactive visualization of the gene with candidate target sites displayed at their genomic positions and color-coded according to quality scores. In addition, for each possible target site, restriction sites and primer candidates are visualized, facilitating a streamlined pipeline of mutant generation and validation. The ease-of-use and speed of CHOPCHOP make it a valuable tool for genome engineering
Mapping cortical activations underlying covert and overt language production using high-density diffuse optical tomography
Gold standard neuroimaging modalities such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and more recently electrocorticography (ECoG) have provided profound insights regarding the neural mechanisms underlying the processing of language, but they are limited in applications involving naturalistic language production especially in developing brains, during face-to-face dialogues, or as a brain-computer interface. High-density diffuse optical tomography (HD-DOT) provides high-fidelity mapping of human brain function with comparable spatial resolution to that of fMRI but in a silent and open scanning environment similar to real-life social scenarios. Therefore, HD-DOT has potential to be used in naturalistic settings where other neuroimaging modalities are limited. While HD-DOT has been previously validated against fMRI for mapping the neural correlates underlying language comprehension and covert (i.e., silent ) language production, HD-DOT has not yet been established for mapping the cortical responses to overt (i.e., out loud ) language production. In this study, we assessed the brain regions supporting a simple hierarchy of language tasks: silent reading of single words, covert production of verbs, and overt production of verbs in normal hearing right-handed native English speakers (n = 33). First, we found that HD-DOT brain mapping is resilient to movement associated with overt speaking. Second, we observed that HD-DOT is sensitive to key activations and deactivations in brain function underlying the perception and naturalistic production of language. Specifically, statistically significant results were observed that show recruitment of regions in occipital, temporal, motor, and prefrontal cortices across all three tasks after performing stringent cluster-extent based thresholding. Our findings lay the foundation for future HD-DOT studies of imaging naturalistic language comprehension and production during real-life social interactions and for broader applications such as presurgical language assessment and brain-machine interfaces
The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis
Background
Globally, the population of adolescents living with perinatally acquired HIV (APHs) continues to expand. In this study, we pooled data from observational pediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in “real-life” settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APHs across multiple regions, including South America and the Caribbean, North America, Europe, sub-Saharan Africa, and South and Southeast Asia.
Methods and findings
Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All children infected with HIV who entered care before age 10 years, were not known to have horizontally acquired HIV, and were followed up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APHs at key time points, including first HIV-associated clinic visit, antiretroviral therapy (ART) start, age 10 years, and last visit, and compares these characteristics by geographic region, country income group (CIG), and birth period. Our secondary analysis describes mortality, transfer out, and lost to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APHs included, 51% were female, 79% were from sub-Saharan Africa and 65% lived in low-income countries. APHs from 51 countries were included (Europe: 14 countries and 3,054 APHs; North America: 1 country and 1,032 APHs; South America and the Caribbean: 4 countries and 903 APHs; South and Southeast Asia: 7 countries and 2,902 APHs; sub-Saharan Africa, 25 countries and 30,296 APHs). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa, and continued until at least 2014 in all regions. The median (interquartile range [IQR]) duration of adolescent follow-up was 3.1 (1.5–5.2) years for the total cohort and 6.4 (3.6–8.0) years in Europe, 3.7 (2.0–5.4) years in North America, 2.5 (1.2–4.4) years in South and Southeast Asia, 5.0 (2.7–7.5) years in South America and the Caribbean, and 2.1 (0.9–3.8) years in sub-Saharan Africa. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3–2.1) years in North America to 7.1 (5.3–8.6) years in sub-Saharan Africa. The median age at ART start varied from 0.9 (0.4–2.6) years in North America to 7.9 (6.0–9.3) years in sub-Saharan Africa. The cumulative incidence estimates (95% confidence interval [CI]) at age 15 years for mortality, transfers out, and LTFU for all APHs were 2.6% (2.4%–2.8%), 15.6% (15.1%–16.0%), and 11.3% (10.9%–11.8%), respectively. Mortality was lowest in Europe (0.8% [0.5%–1.1%]) and highest in South America and the Caribbean (4.4% [3.1%–6.1%]). However, LTFU was lowest in South America and the Caribbean (4.8% [3.4%–6.7%]) and highest in sub-Saharan Africa (13.2% [12.6%–13.7%]). Study limitations include the high LTFU rate in sub-Saharan Africa, which could have affected the comparison of mortality across regions; inclusion of data only for APHs receiving ART from some countries; and unavailability of data from high-burden countries such as Nigeria.
Conclusion
To our knowledge, our study represents the largest multiregional epidemiological analysis of APHs. Despite probable under-ascertained mortality, mortality in APHs remains substantially higher in sub-Saharan Africa, South and Southeast Asia, and South America and the Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses
Future-ai:International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and
healthcare, the deployment and adoption of AI technologies remain limited in
real-world clinical practice. In recent years, concerns have been raised about
the technical, clinical, ethical and legal risks associated with medical AI. To
increase real world adoption, it is essential that medical AI tools are trusted
and accepted by patients, clinicians, health organisations and authorities.
This work describes the FUTURE-AI guideline as the first international
consensus framework for guiding the development and deployment of trustworthy
AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and
currently comprises 118 inter-disciplinary experts from 51 countries
representing all continents, including AI scientists, clinicians, ethicists,
and social scientists. Over a two-year period, the consortium defined guiding
principles and best practices for trustworthy AI through an iterative process
comprising an in-depth literature review, a modified Delphi survey, and online
consensus meetings. The FUTURE-AI framework was established based on 6 guiding
principles for trustworthy AI in healthcare, i.e. Fairness, Universality,
Traceability, Usability, Robustness and Explainability. Through consensus, a
set of 28 best practices were defined, addressing technical, clinical, legal
and socio-ethical dimensions. The recommendations cover the entire lifecycle of
medical AI, from design, development and validation to regulation, deployment,
and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which
provides a structured approach for constructing medical AI tools that will be
trusted, deployed and adopted in real-world practice. Researchers are
encouraged to take the recommendations into account in proof-of-concept stages
to facilitate future translation towards clinical practice of medical AI
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
Structure, function and diversity of the healthy human microbiome
Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in
part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273
to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander;
U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.;
R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.;
R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to
D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and
R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.;
R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was
supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves
and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang,
F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J.
V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.);
DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and
R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and
D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research
Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF
DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL
Laboratory-Directed Research and Development grant 20100034DR and the US
Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research
Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career
Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe
J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by
the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial
Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of
Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis
of the HMPdata was performed using National Energy Research Scientific Computing
resources, the BluBioU Computational Resource at Rice University
A framework for human microbiome research
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
- …