37 research outputs found

    Potential treatment of breast and lung cancer using dicoma anomala, an African medicinal plant

    Get PDF
    Abstract: Globally, cancer has been identified as one of the leading causes of death in public health. Its etiology is based on consistent exposure to carcinogenic. Plant‐derived anticancer compounds are known to be less toxic to the normal cells and are classified into acetylenic compounds, phenolics, terpenes, and phytosterols. Dicoma anomala is a perennial herb belonging to the family Asteraceae and is widely distributed in Sub‐Saharan Africa and used in the treatment of cancer, malaria, fever, diabetes, ulcers, cold, and cough. This review aimed at highlighting the benefits of D. anomala in various therapeutic applications with special reference to the treatment of cancers and the mechanisms through which the plant‐derived agents induce cell death

    Role of Photoactive Phytocompounds in Photodynamic Therapy of Cancer

    Get PDF
    Abstract:Cancer is one of the greatest life-threatening diseases conventionally treated using chemoand radio-therapy. Photodynamic therapy (PDT) is a promising approach to eradicate different types of cancers. PDT requires the administration of photosensitisers (PSs) and photoactivation using a specific wavelength of light in the presence of molecular oxygen. This photoactivation exerts an anticancer effect via apoptosis, necrosis, and autophagy of cancer cells. Recently, various natural compounds that exhibit photosensitising potentials have been identified. Photoactive substances derived from medicinal plants have been found to be safe in comparison with synthetic compounds. Many articles have focused on PDT mechanisms and types of PSs, but limited attention has been paid to the phototoxic activities of phytocompounds. The reduced toxicity and side effects of natural compounds inspire the researchers to identify and use plant extracts or phytocompounds as a potent naturalPScandidateforPDT.Thisreviewfocussesontheimportanceofcommonphotoactivegroups (furanocoumarins, polyacetylenes, thiophenes, curcumins, alkaloids, and anthraquinones), their phototoxic effects, anticancer activity and use as a potent PS for an effective PDT outcome in the treatment of various cancers

    Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells

    Get PDF
    Abstract: Metallic nanoparticles (NPs) especially silver (Ag) NPs have shown immense potential in medical applications due to their distinctive physio-chemical and biological properties. This article reports the conjugation of Ag NPs with Rubus fairholmianus extract. The modification of Ag NPs was confirmed using various physico-chemical characterization techniques. The cytotoxic effect of Rubus-conjugated Ag NPs (RAgNPs) was studied by LDH assay and proliferation by ATP assay. The apoptotic inducing ability of the NPs were investigated by Annexin V/PI staining, caspase 3/7 analysis, cytochrome c release, intracellular ROS analysis, Hoechst staining and mitochondrial membrane potential analysis using flow cytometry. The expression of apoptotic proteins caspase 3, Bax and P53 were analyzed using ELISA and caspase 3, Bax using western blotting. Cells treated with 10 µg/mL RAgNPs showed an increased number of cell death by microscopic analysis compared to untreated control cells. The RAgNPs induced a statistically significant dose-dependent decrease in proliferation (p < 0.001 for 5 and 10 µg/mL) and increased cytotoxicity in MCF-7 cells. A 1.83 fold increase in cytotoxicity was observed in cells treated with 10 µg/mL (p < 0.05) compared to the untreated cells. Nuclear damage and intracellular ROS production were observed upon treatment with all tested concentrations of RAgNPs and the highest concentrations (5 and 10 µg/mL) showed significant (p < 0.05, p < 0.01) expression of caspase 3, Bax and P53 proteins. The data strongly suggest that RAgNPs induces cell death in MCF-7 cells through the mitochondrial-mediated intrinsic apoptosis pathway. The present investigation supports the potential of RAgNPs in anticancer drug development

    Anti-Proliferative, Analgesic and Anti-Inflammatory Properties of Syzygium mundagam Bark Methanol Extract

    Get PDF
    Abstract: Cancer, pain and inflammation have long been a cause for concern amongst patients, clinicians and research scientists. There is an alarming increase in the demand for medicines suppressing these disease conditions. The present study investigates the role of Syzygium mundagam bark methanol (SMBM) extract against MCF-7 breast cancer cells, pain and inflammation. The MCF-7 cells treated with SMBM were analyzed for adenosine triphosphate (ATP), lactate dehydrogenase (LDH) levels, changes in cell morphology and nuclear damage. Hot plate, acetic acid and formalin-induced pain models were followed to determine the analgesic activity. Anti-inflammatory activity was studied using carrageenan, egg albumin and cotton pellet induced rat models. Microscopic images of cells in SMBM treated groups showed prominent cell shrinkage and nuclear damage. Hoechst stain results supported the cell death morphology. The decline in ATP (47.96%) and increased LDH (40.96%) content indicated SMBM induced toxicity in MCF-7 cells. In the in vivo study, a higher dose (200 mg/kg) of the extract was found to be effective in reducing pain and inflammation. The results are promising and the action of the extract on MCF-7 cells, pain and inflammation models indicate the potential of drugs of natural origin to improve current therapies

    The influence of light on reactive oxygen species and NF-êB in disease progression

    Get PDF
    Abstract: Abstract: Reactive oxygen species (ROS) are important secondary metabolites that play major roles in signaling pathways, with their levels often used as analytical tools to investigate various cellular scenarios. They potentially damage genetic material and facilitate tumorigenesis by inhibiting certain tumor suppressors. In diabetic conditions, substantial levels of ROS stimulate oxidative stress through specialized precursors and enzymatic activity, while minimum levels are required for proper wound healing. Photobiomodulation (PBM) uses light to stimulate cellular mechanisms and facilitate the removal of oxidative stress. Photodynamic therapy (PDT) generates ROS to induce selective tumor destruction. The regulatory roles of PBM via crosstalk between ROS and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-êB) are substantial for the appropriate management of various conditions

    Molecular Effectors of Photodynamic Therapy-Mediated Resistance to Cancer Cells

    Get PDF
    Abstract: Photodynamic therapy (PDT) is currently enjoying considerable attention as the subject of experimental research to treat resistant cancers. The preferential accumulation of a non-toxic photosensitizer (PS) in different cellular organelles that causes oxidative damage by combining light and molecular oxygen leads to selective cell killing. However, one major setback, common among other treatment approaches, is tumor relapse and the development of resistance causing treatment failure. PDT-mediated resistance could result from increased drug efflux and decreased localization of PS, reduced light exposure, increased DNA damage repair, and altered expression of survival genes. This review highlights the essential insights of PDT reports in which PDT resistance was observed and which identified some of the molecular effectors that facilitate the development of PDT resistance. We also discuss different perceptions of PDT and how its current limitations can be overturned to design improved cancer resistant treatments

    Response of MCF-7 Breast Cancer Cells Overexpressed with P-Glycoprotein to Apoptotic Induction after Photodynamic Therapy

    Get PDF
    Abstract: Multidrug resistance (MDR) has posed a significant threat to cancer treatment and has led to the emergence of a new therapeutic regime of photodynamic therapy (PDT) to curb the menace. The PDT modality employs a photosensitiser (PS), excited at a specific wavelength of light to kill cancer cells. In the present study, we used a zinc phthalocyanine tetrasulfonic acid PS to mediate the photodynamic killing of MCF-7 cells overexpressed with P-glycoprotein (P-gp) and investigate the response to cell death induction. After photodynamic treatment, MCF-7 cells undergo cell death, and indicators like Annexin V/PI staining, DNA fragmentation, and measurement of apoptotic protein expression were investigated. Results showed increased externalisation of phosphatidylserine protein, measured as a percentage in flow cytometry indicative of apoptotic induction. This expression was significant (p < 0.006) for the untreated control cells, and there was no detection of DNA fragments after a laser fluence of 20 J/cm2. In addition, a statistically significant difference (p < 0.05) was seen in caspase 8 activity and Bax protein expression. These findings were indicative of apoptotic induction and thus seem to represent the extrinsic apoptotic pathway. This study shows the role of PDT in the treatment of a resistant phenotype breast cancer

    In vitro combined effect of Doxorubicin and sulfonated zinc Phthalocyanine– mediated photodynamic therapy on MCF-7 breast cancer cells

    Get PDF
    Abstract: Doxorubicin is a broad-spectrum antibiotic and anticancer drug used to treat a variety of human malignancies like breast cancer and leukaemia. Unfortunately, a dose-dependent side effect of this drug is common, representing a major obstacle to its use despite its therapeutic efficacy. Photodynamic therapy is an emerging non-invasive potential adjuvant for conventional cancer treatment. In an attempt to circumvent the dose-limiting effect of doxorubicin, this study aimed to investigate cellular anticancer activity of doxorubicin and sulfonated zinc phthalocyanine–mediated photodynamic therapy on MCF-7 cells alone and in combination. Furthermore, we investigated the cell death pathway resulting from the combination treatment. MCF-7 cells were incubated with 0.5 μM concentration of doxorubicin for 20 h, afterwards, various concentrations of sulfonated zinc phthalocyanine were added and incubated for 4 h. Cells were irradiated using a 681.5 nm diode laser at 4.53 mW/cm2 for 18 min 24 s (5 J/cm2). Cell viability and proliferation were measured using trypan blue assay and homogeneous adenosine triphosphate quantitation assay, respectively, while qualitative changes in cellular morphology were observed under inverted light microscopy. Cellular DNA damage was assessed under fluorescent microscopy and Annexin V/propidium iodide stain was used to investigate the cell death pathway. Findings from this study shown that combined treatment with doxorubicin and photodynamic therapy was more effective in inhibiting the proliferation and growth of MCF-7 cells. Overall, the results indicate that combination of smaller dose of doxorubicin with photodynamic therapy is a promising combined treatment strategy for breast carcinoma. However, this combination warrants further investigation

    Fundamentals and applications of metal nanoparticle- enhanced singlet oxygen generation for improved cancer photodynamic therapy

    Get PDF
    The introduction of nanotechnology in the field of Photodynamic Therapy (PDT) has proven to have great potential to overcome some of the challenges associated with traditional organic photosensitizers (PS) with respect to their solubility, drug delivery, distribution and site-specific targeting. Other focused areas in PDT involve high singlet oxygen production capability and excitability of PS by deep tissue penetrating light wavelengths. Owing to their very promising optical and surface plasmon resonance properties, combination of traditional PSs with plasmonic metallic nanoparticles like gold and silver nanoparticles results in remarkably high singlet oxygen production and extended excitation property from visible and near-infrared lights. This review summarizes the importance, fundamentals and applications of on plasmonic metallic nanoparticles in PDT. Lastly, we highlight the future prospects of these plasmonic nanoengineering strategies with or without PS combination, to have a significant impact in improving the therapeutic efficacy of cancer PDT
    corecore