4,915 research outputs found

    Physiology and molecular biology of aquatic cyanobacteria

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 359, doi:10.3389/fmicb.2014.00359.Cyanobacteria thrive in every illuminated aquatic environment known, contributing at least 25% of primary productivity worldwide. Given their importance in carbon and nutrient cycles, cyanobacteria are essential geochemical agents that have shaped the composition of the Earth's crust, oceans and atmosphere for billions of years. The high diversity of cyanobacteria is reflected in the panoply of unique physiological adaptations across the phylum, including different strategies to optimize light harvesting or sustain nitrogen fixation, but also different lifestyles like psychrotrophy, and oligotrophy. Some cyanobacteria produce secondary metabolites of cryptic function, many of which are toxic to eukaryotes. Consequently, bloom-forming toxic cyanobacteria are global hazards that are of increasing concern in surface waters affected by anthropogenic nutrient loads and climate change

    3DEG: Data-Driven Descriptor Extraction for Global re-localization in subterranean environments

    Full text link
    Current global re-localization algorithms are built on top of localization and mapping methods andheavily rely on scan matching and direct point cloud feature extraction and therefore are vulnerable infeatureless demanding environments like caves and tunnels. In this article, we propose a novel globalre-localization framework that: a) does not require an initial guess, like most methods do, while b)it has the capability to offer the top-kcandidates to choose from and last but not least provides anevent-based re-localization trigger module for enabling, and c) supporting completely autonomousrobotic missions. With the focus on subterranean environments with low features, we opt to usedescriptors based on range images from 3D LiDAR scans in order to maintain the depth informationof the environment. In our novel approach, we make use of a state-of-the-art data-driven descriptorextraction framework for place recognition and orientation regression and enhance it with the additionof a junction detection module that also utilizes the descriptors for classification purposes

    Autonomous Point Cloud Segmentation for Power Lines Inspection in Smart Grid

    Full text link
    LiDAR is currently one of the most utilized sensors to effectively monitor the status of power lines and facilitate the inspection of remote power distribution networks and related infrastructures. To ensure the safe operation of the smart grid, various remote data acquisition strategies, such as Airborne Laser Scanning (ALS), Mobile Laser Scanning (MLS), and Terrestrial Laser Scanning (TSL) have been leveraged to allow continuous monitoring of regional power networks, which are typically surrounded by dense vegetation. In this article, an unsupervised Machine Learning (ML) framework is proposed, to detect, extract and analyze the characteristics of power lines of both high and low voltage, as well as the surrounding vegetation in a Power Line Corridor (PLC) solely from LiDAR data. Initially, the proposed approach eliminates the ground points from higher elevation points based on statistical analysis that applies density criteria and histogram thresholding. After denoising and transforming of the remaining candidate points by applying Principle Component Analysis (PCA) and Kd-tree, power line segmentation is achieved by utilizing a two-stage DBSCAN clustering to identify each power line individually. Finally, all high elevation points in the PLC are identified based on their distance to the newly segmented power lines. Conducted experiments illustrate that the proposed framework is an agnostic method that can efficiently detect the power lines and perform PLC-based hazard analysis.Comment: Accepted in the 22nd World Congress of the International Federation of Automatic Control [IFAC WC 2023

    Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue with Autonomous Heterogeneous Robotic Systems

    Full text link
    Search and Rescue (SAR) missions in harsh and unstructured Sub-Terranean (Sub-T) environments in the presence of aerosol particles have recently become the main focus in the field of robotics. Aerosol particles such as smoke and dust directly affect the performance of any mobile robotic platform due to their reliance on their onboard perception systems for autonomous navigation and localization in Global Navigation Satellite System (GNSS)-denied environments. Although obstacle avoidance and object detection algorithms are robust to the presence of noise to some degree, their performance directly relies on the quality of captured data by onboard sensors such as Light Detection And Ranging (LiDAR) and camera. Thus, this paper proposes a novel modular agnostic filtration pipeline based on intensity and spatial information such as local point density for removal of detected smoke particles from Point Cloud (PCL) prior to its utilization for collision detection. Furthermore, the efficacy of the proposed framework in the presence of smoke during multiple frontier exploration missions is investigated while the experimental results are presented to facilitate comparison with other methodologies and their computational impact. This provides valuable insight to the research community for better utilization of filtration schemes based on available computation resources while considering the safe autonomous navigation of mobile robots.Comment: Accepted in the 49th Annual Conference of the IEEE Industrial Electronics Society [IECON2023

    Irregular Change Detection in Sparse Bi-Temporal Point Clouds using Learned Place Recognition Descriptors and Point-to-Voxel Comparison

    Full text link
    Change detection and irregular object extraction in 3D point clouds is a challenging task that is of high importance not only for autonomous navigation but also for updating existing digital twin models of various industrial environments. This article proposes an innovative approach for change detection in 3D point clouds using deep learned place recognition descriptors and irregular object extraction based on voxel-to-point comparison. The proposed method first aligns the bi-temporal point clouds using a map-merging algorithm in order to establish a common coordinate frame. Then, it utilizes deep learning techniques to extract robust and discriminative features from the 3D point cloud scans, which are used to detect changes between consecutive point cloud frames and therefore find the changed areas. Finally, the altered areas are sampled and compared between the two time instances to extract any obstructions that caused the area to change. The proposed method was successfully evaluated in real-world field experiments, where it was able to detect different types of changes in 3D point clouds, such as object or muck-pile addition and displacement, showcasing the effectiveness of the approach. The results of this study demonstrate important implications for various applications, including safety and security monitoring in construction sites, mapping and exploration and suggests potential future research directions in this field

    OH in naturally occurring corundum

    Full text link
    • …
    corecore