50 research outputs found

    Method for Identifying Regulators of Protein-Advanced Glycation End Product (Protein-Age) Formation

    Get PDF
    The invention relates to methods for identifying compounds which affect cellular stress. In particular, the method relates to identifying compounds which inhibit protein advanced glycation end product formation, where the compounds are carbonyl scavengers which inhibit the formation. The assay involves combing the substance of interest with histone H1 and ADP-ribose, and then measuring fluorescence and protein cross linking. Various inhibitors of protein AGE glycation have been identified, using this assay

    Method and Use of α-Amino-β-Mercapto-Ethane Derivatives as Dicarbonyl Scavengers for Treatment of Conditions Resulting from Protein, Lipid, and DNA Damage

    Get PDF
    Methods of inhibiting damage to proteins, lipids, and DNA by the use of penicillamines and other α-amino-β,β-mercapto-β,β-dimethyl-ethane compounds as dicarbonyl scavengers is disclosed

    Repurposing the Electron Transfer Reactant Phenazine Methosulfate (PMS) for the Apoptotic Elimination of Malignant Melanoma Cells through Induction of Lethal Oxidative and Mitochondriotoxic Stress

    Get PDF
    Redox-directed pharmacophores have shown potential for the apoptotic elimination of cancer cells through chemotherapeutic induction of oxidative stress. Phenazine methosulfate (PMS), a N-alkylphenazinium cation-based redox cycler, is used widely as an electron transfer reactant coupling NAD(P)H generation to the reduction of tetrazolium salts in biochemical cell viability assays. Here, we have explored feasibility of repurposing the redox cycler PMS as a superoxide generating chemotherapeutic for the pro-oxidant induction of cancer cell apoptosis. In a panel of malignant human melanoma cells (A375, G361, LOX), low micromolar concentrations of PMS (1-10 μM, 24 h) displayed pronounced apoptogenicity as detected by annexin V-ITC/propidium iodide flow cytometry, and PMS-induced cell death was suppressed by antioxidant (NAC) or pan-caspase inhibitor (zVAD-fmk) cotreatment. Gene expression array analysis in A375 melanoma cells (PMS, 10 µM; 6 h) revealed transcriptional upregulation of heat shock (HSPA6, HSPA1A), oxidative (HMOX1) and genotoxic (EGR1, GADD45A) stress responses, confirmed by immunoblot detection demonstrating upregulation of redox regulators (NRF2, HO-1, HSP70) and modulation of pro- (BAX, PUMA) and anti-apoptotic factors (Bcl-2, Mcl-1). PMS-induced oxidative stress and glutathione depletion preceded induction of apoptotic cell death. Furthermore, the mitochondrial origin of PMS-induced superoxide production was substantiated by MitoSOX-Red live cell fluorescence imaging, and PMS-induced mitochondriotoxicity (as evidenced by diminished transmembrane potential and oxygen consumption rate) was observable at early time points. After demonstrating NADPH-driven (SOD-suppressible) superoxide radical anion generation by PMS employing a chemical NBT reduction assay, PMS-induction of oxidative genotoxic stress was substantiated by quantitative Comet analysis that confirmed the introduction of formamido-pyrimidine DNA glycosylase (Fpg)-sensitive oxidative DNA lesions in A375 melanoma cells. Taken together, these data suggest feasibility of repurposing the biochemical reactant PMS as an experimental pro-oxidant targeting mitochondrial integrity and redox homeostasis for the apoptotic elimination of malignant melanoma cells.National Institutes of Health [1R01CA229418, 1R03CA230949, ES007091, ES006694]; National Institutes of Health (Arizona Cancer Center Support Grant) [CA023074]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin

    No full text
    Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana). Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/-)]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA)-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches

    Maillard Reaction of Free and Nucleic Acid-Bound 2-Deoxy- d

    No full text

    Deuterium Oxide (D2O) Induces Early Stress Response Gene Expression and Impairs Growth and Metastasis of Experimental Malignant Melanoma

    No full text
    There are two stable isotopes of hydrogen, protium (1H) and deuterium (2H; D). Cellular stress response dysregulation in cancer represents both a major pathological driving force and a promising therapeutic target, but the molecular consequences and potential therapeutic impact of deuterium (2H)-stress on cancer cells remain largely unexplored. We have examined the antiproliferative and apoptogenic effects of deuterium oxide (D2O; ‘heavy water’) together with stress response gene expression profiling in panels of malignant melanoma (A375V600E, A375NRAS, G361, LOX-IMVI), and pancreatic ductal adenocarcinoma (PANC-1, Capan-2, or MIA PaCa-2) cells with inclusion of human diploid Hs27 skin fibroblasts. Moreover, we have examined the efficacy of D2Obased pharmacological intervention in murine models of human melanoma tumor growth and metastasis. D2O-induction of apoptosis was substantiated by AV-PI flow cytometry, immunodetection of PARP-1, and pro-caspase 3 cleavage, and rescue by pan-caspase inhibition. Differential array analysis revealed early modulation of stress response gene expression in both A375 melanoma and PANC-1 adenocarcinoma cells elicited by D2O (90%; ≤6 h) (upregulated: CDKN1A, DDIT3, EGR1, GADD45A, HMOX1, NFKBIA, or SOD2 (up to 9-fold; p < 0.01)) confirmed by independent RT-qPCR analysis. Immunoblot analysis revealed rapid onset of D2O-induced stress response phospho-protein activation (p-ERK, p-JNK, p-eIF2α, or p-H2AX) or attenuation (p- AKT). Feasibility of D2O-based chemotherapeutic intervention (drinking water (30% w/w)) was demonstrated in a severe combined immunodeficiency (SCID) mouse melanoma metastasis model using luciferase-expressing A375-Luc2 cells. Lung tumor burden (visualized by bioluminescence imaging) was attenuated by D2O, and inhibition of invasiveness was also confirmed in an in vitro Matrigel transwell invasion assay. D2O supplementation also suppressed tumor growth in a murine xenograft model of human melanoma, and median survival was significantly increased without causing adverse effects. These data demonstrate for the first time that systemic D2O administration impairs growth and metastasis of malignant melanoma through the pharmacological induction of deuterium (2H)-stress. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.National Institutes of HealthOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Antimelanoma Activity of Apoptogenic Carbonyl Scavengers

    No full text

    The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Get PDF
    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT-treated reconstructs that displayed increased immunohistochemical staining for Nrf2 and γ-GCS together with the elevation of total glutathione levels. Taken together, our data suggest the feasibility of achieving tanshinone-based cutaneous Nrf2-activation and photoprotection

    Identification of Quenchers of Photoexcited States as Novel Agents for Skin Photoprotection

    No full text
    corecore