40 research outputs found

    Lambert W random variables - a new family of generalized skewed distributions with applications to risk estimation

    Full text link
    Originating from a system theory and an input/output point of view, I introduce a new class of generalized distributions. A parametric nonlinear transformation converts a random variable XX into a so-called Lambert WW random variable YY, which allows a very flexible approach to model skewed data. Its shape depends on the shape of XX and a skewness parameter γ\gamma. In particular, for symmetric XX and nonzero γ\gamma the output YY is skewed. Its distribution and density function are particular variants of their input counterparts. Maximum likelihood and method of moments estimators are presented, and simulations show that in the symmetric case additional estimation of γ\gamma does not affect the quality of other parameter estimates. Applications in finance and biomedicine show the relevance of this class of distributions, which is particularly useful for slightly skewed data. A practical by-result of the Lambert WW framework: data can be "unskewed." The RR package http://cran.r-project.org/web/packages/LambertWLambertW developed by the author is publicly available (http://cran.r-project.orgCRAN).Comment: Published in at http://dx.doi.org/10.1214/11-AOAS457 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Forecastable Component Analysis (ForeCA)

    Full text link
    I introduce Forecastable Component Analysis (ForeCA), a novel dimension reduction technique for temporally dependent signals. Based on a new forecastability measure, ForeCA finds an optimal transformation to separate a multivariate time series into a forecastable and an orthogonal white noise space. I present a converging algorithm with a fast eigenvector solution. Applications to financial and macro-economic time series show that ForeCA can successfully discover informative structure, which can be used for forecasting as well as classification. The R package ForeCA (http://cran.r-project.org/web/packages/ForeCA/index.html) accompanies this work and is publicly available on CRAN.Comment: 10 pages, 4 figures; ICML 201

    Mixed LICORS: A Nonparametric Algorithm for Predictive State Reconstruction

    Full text link
    We introduce 'mixed LICORS', an algorithm for learning nonlinear, high-dimensional dynamics from spatio-temporal data, suitable for both prediction and simulation. Mixed LICORS extends the recent LICORS algorithm (Goerg and Shalizi, 2012) from hard clustering of predictive distributions to a non-parametric, EM-like soft clustering. This retains the asymptotic predictive optimality of LICORS, but, as we show in simulations, greatly improves out-of-sample forecasts with limited data. The new method is implemented in the publicly-available R package "LICORS" (http://cran.r-project.org/web/packages/LICORS/).Comment: 11 pages; AISTATS 201

    Mixed LICORS: A Nonparametric Algorithm for Predictive State Reconstruction

    Get PDF
    Abstract We introduce mixed LICORS, an algorithm for learning nonlinear, high-dimensional dynamics from spatio-temporal data, suitable for both prediction and simulation. Mixed LICORS extends the recent LICORS algorithm (Goerg and Shalizi, 2012) from hard clustering of predictive distributions to a non-parametric, EM-like soft clustering. This retains the asymptotic predictive optimality of LICORS, but, as we show in simulations, greatly improves out-of-sample forecasts with limited data. The new method is implemented in the publicly-available R package LICORS

    Dictator Games: A Meta Study

    Full text link
    corecore