27 research outputs found

    Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples

    Get PDF
    Objective: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. Methods: Cortical thickness and surface area (based on the Desikan–Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). Results: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen’s d=−0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. Conclusions: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis

    Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets

    Get PDF
    Objective Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen’s d from −0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait

    Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups

    Get PDF
    Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders. Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures). Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed. Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders

    Accuracy and bias of automatic hippocampal segmentation in children and adolescents

    No full text
    The hippocampus (Hc) is of great importance in various psychiatric diseases in adults, children and adolescents. Automated Hc segmentation has been widely used in adults, implying sufficient overlap with manual segmentation. However, estimation biases related to the Hc volume have been pointed out. This may particularly apply to children who show age-related Hc volume changes, thus, questioning the accuracy of automated Hc segmentation in this age group. The aim of this study was to compare manual segmentation with automated segmentation using the widely adopted FreeSurfer (FS) and MAGeT-Brain software. In 70 children and adolescents (5–16 years, mean age 10.6 years), T1-weighted images were acquired on one of two identical 3T scanners. Automated segmentation was performed using the FS subcortical segmentation, the FS hippocampal subfields segmentation and the MAGeT-Brain software. In comparison with manual segmentation, volume differences, Dice similarity coefficient (DSC), Bland–Altman plot, intraclass correlation coefficient (ICC) and left–right consistency of automated segmentation were calculated. The average percentage of volume differences (PVD) with manual segmentation was 56.8% for FS standard segmentation, 32.2% for FS subfield segmentation and − 15.6% for MAGeT-Brain. The FS Hc subfields segmentation (left/right DSC = 0.86/0.87) and MAGeT-Brain (both hemispheres DSC = 0.91) resulted in a higher volume overlap with manual segmentation compared with the FS subcortical segmentation (DSC = 0.79/0.78). In children aged 5–10.5 years, MAGeT-Brain yielded the highest overlap (DSC = 0.92/0.93). Contrary volume estimation biases were detected in FS and MAGeT-Brain: FS showed larger volume overestimation in smaller Hc volumes, while MAGeT-Brain showed more pronounced volume underestimation in larger Hc volumes. While automated Hc segmentation using FS hippocampal subfields or MAGeT-Brain resulted in adequate volume overlap with manual segmentation, estimation biases compromised the reliability of automated procedures in children and adolescents

    Science Signaling, Perspective – Cancer: Wnt/β-Catenin and MAPK Signaling: Allies and Enemies in Different Battlefields, April 2012 [Science Signaling, Ausblick – Krebs: Wnt/β-Catenin- und MAPK-Signaltransduktion: Verbündete und Feinde in unterschiedlichen Kampfzonen, April 2012]

    No full text
    [english] Research published in represents major advances in cell signaling in many disciplines, including the rapidly expanding areas of signaling networks, systems biology, synthetic biology, computation and modeling of regulatory pathways, and drug discovery. The published research content offers discoveries that substantially refine current understanding of important signaling processes, provide new concepts, and are likely to find application in multiple biological systems. Two papers this year in describe previously unknown links between two signaling pathways that are associated with cancer – melanoma and colon cancer. The Perspective, and MAPK Signaling: Allies and Enemies in Different Battlefields,” describes how both studies have implications for the development of combination therapies for skin and colon cancer .<br>[german] Die in veröffentlichten Forschungsarbeiten stellen die wichtigsten Fortschritte zur Zellsignaltransduktion in vielen Fachbereichen dar und umfassen die schnell wachsenden Gebiete der Signaltransduktionsnetzwerke, der Systembiologie, der synthetischen Biologie, der Berechnung und Modelldarstellung regulatorischer Pfade sowie der Pharmaforschung. Die veröffentlichten Forschungsergebnisse bieten Entdeckungen, die das derzeitige Wissen zu wichtigen Signaltransduktionsprozessen beträchtlich vertiefen, neue Konzepte anbieten und wahrscheinlich Anwendung in mehreren biologischen Systemen finden werden. Zwei Arbeiten, die dieses Jahr in erschienen sind, beschreiben zuvor noch nicht bekannte Zusammenhänge zwischen zwei Signaltransduktionswegen, die mit Krebs (Melanom und Darmkrebs) assoziiert sind. Der Ausblick „Wnt/β-Catenin- und MAPK-Signaltransduktion: Verbündete und Feinde in unterschiedlichen Kampfzonen“ beschreibt, wie beide Studien Auswirkungen auf die Entwicklung von Kombinationstherapien gegen Haut- und Darmkrebs haben

    Effects of Early-Life Adversity on Hippocampal Structures and Associated HPA Axis Functions

    Get PDF
    Early-life adversity (ELA) is one of the major risk factors for serious mental and physical health risks later in life. ELA has been associated with dysfunctional neurodevelopment, especially in brain structures such as the hippocampus, and with dysfunction of the stress system, including the hypothalamic-pituitary-adrenal (HPA) axis. Children who have experienced ELA are also more likely to suffer from mental health disorders such as depression later in life. The exact interplay of aberrant neurodevelopment and HPA axis dysfunction as risks for psychopathology is not yet clear. We investigated volume differences in the bilateral hippocampus and in stress-sensitive hippocampal subfields, behavior problems, and diurnal cortisol activity in 24 children who had experienced documented ELA (including out-of-home placement) in a circumscribed duration of adversity only in their first 3 years of life in comparison to data on 25 control children raised by their biological parents. Hippocampal volumes and stress-sensitive hippocampal subfields (Cornu ammonis [CA]1, CA3, and the granule-cell layer of the dentate gyrus [GCL-DG]) were significantly smaller in children who had experienced ELA, taking psychiatric diagnoses and dimensional psychopathological symptoms into account. ELA moderated the relationship between left hippocampal volume and cortisol: in the control group, hippocampal volumes were not related to diurnal cortisol, while in ELA children, a positive linear relationship between left hippocampal volume and diurnal cortisol was present. Our findings show that ELA is associated with altered development of the hippocampus, and an altered relationship between hippocampal volume and HPA axis activity in youth in care, even after they have lived in stable and caring foster family environments for years. Altered hippocampal development after ELA could thus be associated with a risk phenotype for the development of psychiatric disorders later in life
    corecore