15 research outputs found
The Role for the Endocannabinoid System in Cardioprotection and Myocardial Adaptation
Results from different studies showing CB2 receptor-associated cardioprotective action are still fairly controversial and no single specific mechanism could be identified. Several groups investigated the involvement of the endocannabinoid system in cellular systems and function of cardiomyocytes, fibroblasts, macrophages and endothelial cells. While some studies are limited in their translational relevance, a few recent studies describe a myocardial ischemia and reperfusion scenario in a fashion comparable to the clinical situation. Recent studies provided evidence for involvement of the CB2 receptorâendocannabinoid axis in prevention of cardiomyocyte apoptosis including modulation of antioxidative enzymes and contractile elements expression. CB2 receptor has further been shown to specifically modulate the inflammatory response and macrophage function after myocardial ischemia. These effects have an impact on the subsequent myocardial remodeling, where the CB2 receptor modulates function of myofibroblasts, collagen production and limitation of myocardial infarction size. Recent experimental and clinical data showed the association of the endocannabinoid system in myocardial hypertrophy. In conclusion, increasing amount of evidence supports a crucial role of the endocannabinoid system in cardioprotection and myocardial remodeling, while some of them even suggest model-independent systemic effects in adaptation of cardiomyocytes or components of the extracellular matrix
Toll-Like Receptor 9 Promotes Cardiac Inflammation and Heart Failure during Polymicrobial Sepsis
Background. Aim was to elucidate the role of toll-like receptor 9 (TLR9) in cardiac inflammation and septic heart failure in a murine model of polymicrobial sepsis. Methods. Sepsis was induced via colon ascendens stent peritonitis (CASP) in C57BL/6 wild-type (WT) and TLR9-deficient (TLR9-D) mice. Bacterial load in the peritoneal cavity and cardiac expression of inflammatory mediators were determined at 6, 12, 18, 24, and 36âh. Eighteen hours after CASP cardiac function was monitored in vivo. Sarcomere length of isolated cardiomyocytes was measured at 0.5 to 10âHz after incubation with heat-inactivated bacteria. Results. CASP led to continuous release of bacteria into the peritoneal cavity, an increase of cytokines, and differential regulation of receptors of innate immunity in the heart. Eighteen hours after CASP WT mice developed septic heart failure characterised by reduction of end-systolic pressure, stroke volume, cardiac output, and parameters of contractility. This coincided with reduced cardiomyocyte sarcomere shortening. TLR9 deficiency resulted in significant reduction of cardiac inflammation and a sustained heart function. This was consistent with reduced mortality in TLR9-D compared to WT mice. Conclusions. In polymicrobial sepsis TLR9 signalling is pivotal to cardiac inflammation and septic heart failure
Comparison of Myocardial Remodeling between Cryoinfarction and Reperfused Infarction in Mice
Myocardial infarction is associated with inflammatory reaction leading to tissue remodeling. We compared tissue remodeling between cryoinfarction (cMI) and reperfused myocardial infarction (MI) in order to better understand the local environment where we apply cell therapies. Models of closed-chest one-hour ischemia/reperfusion MI and cMI were used in C57/Bl6-mice. The reperfused MI showed rapid development of granulation tissue and compacted scar formation after 7 days. In contrast, cMI hearts showed persistent cardiomyocyte debris and cellular infiltration after 7 days and partially compacted scar formation accompanied by persistent macrophages and myofibroblasts after 14 days. The mRNA of proinflammatory mediators was transiently induced in MI and persistently upregulated in cMI. Tenascin C and osteopontin-1 showed delayed induction in cMI. In conclusion, the cryoinfarction was associated with prolonged inflammation and active myocardial remodeling when compared to the reperfused MI. These substantial differences in remodeling may influence cellular engraftment and should be considered in cell therapy studies
Cardioprotective Effects of Osteopontin-1 during Development of Murine Ischemic Cardiomyopathy
Repetitive brief ischemia and reperfusion (I/R) is associated with ventricular dysfunction in pathogenesis of murine ischemic cardiomyopathy and human hibernating myocardium. We investigated the role of matricellular protein osteopontin-1 (OPN) in murine model of repetitive I/R. One 15-min LAD-occlusion followed by reperfusion was performed daily over 3, 5, and 7 consecutive days in C57/Bl6 wildtype- (WT-) and OPNâ/â-mice (n=8/group). After echocardiography hearts were processed for histological and mRNA-studies. Cardiac fibroblasts were isolated, cultured, and stimulated with TGF-ÎČ1. WT-mice showed an early, strong, and cardiomyocyte-specific osteopontin-expression leading to interstitial macrophage infiltration and consecutive fibrosis after 7 days I/R in absence of myocardial infarction. In contrast, OPNâ/â-mice showed small, nontransmural infarctions after 3 days I/R associated with significantly worse ventricular dysfunction. OPNâ/â-mice had different expression of myocardial contractile elements and antioxidative mediators and a lower expression of chemokines during I/R. OPNâ/â-mice showed predominant collagen deposition in macrophage-rich small infarctions. We found lower induction of tenascin-C, MMP-9, MMP-12, and TIMP-1, whereas MMP-13-expression was higher in OPNâ/â-mice. Cultured OPNâ/â-myofibroblasts confirmed these findings. In conclusion, osteopontin seems to modulate expression of contractile elements, antioxidative mediators, and inflammatory response and subsequently remodel in order to protect cardiomyocytes in murine ischemic cardiomyopathy
Myocardial hypertrophy is associated with inflammation and activation of endocannabinoid system in patients with aortic valve stenosis,â
Aims: Endocannabinoids and their receptors have been associated with cardiac adaptation to injury, inflammation and fibrosis. Experimental studies suggested a role for inflammatory reaction and active remodeling in myocardial hypertrophy, but they have not been shown in human hypertrophy. We investigated the association of the endocannabinoid system with myocardial hypertrophy in patients with aortic stenosis. Main methods: Myocardial biopsies were collected from patients with aortic stenosis (AS) and atrial myxoma as controls during surgery. Histological and molecular analysis of endocannabinoids and their receptors, inflammatory and remodeling-related cells and mediators was performed. Key findings: Myocardial hypertrophy was confirmed with significantly higher cardiomyocyte diameter in AS than in myxoma patients, which had normal cell size. AS patients presented compensated myocardial adaptation to pressure overload. AS patients had significantly higher: concentration of endocannabinoid anandamide, expression of its degrading enzyme FAAH, and of cannabinoid receptor CB2, being predominantly located on cardiomyocytes. Cell density of macrophages and newly recruited leukocytes were higher in AS group, which together with increased expression of chemokines CCL2, CCL4 and CXCL8, and suppression of anti-inflammatory IL-10 indicates persistent inflammatory reaction. We found higher myofibroblast density and stronger tenascin C staining along with mRNA induction of tenascin C and CTGF in AS patients showing active myocardial remodeling. Significance: Our study shows for the first time activation of the endocannabinoid system and predominant expression of its receptor CB2 on cardiomyocytes being associated with persistent inflammation and active remodeling in hypertrophic myocardium of patients with aortic stenosis
Activation of Endocannabinoid System Is Associated with Persistent Inflammation in Human Aortic Aneurysm
Human aortic aneurysms have been associated with inflammation and vascular remodeling. Since the endocannabinoid system modulates inflammation and tissue remodeling, we investigated its components in human aortic aneurysms. We obtained anterior aortic wall samples from patients undergoing elective surgery for aortic aneurysm or coronary artery disease as controls. Histological and molecular analysis (RT-qPCR) was performed, and endocannabinoid concentration was determined using LC-MRM. Patient characteristics were comparable between the groups except for a higher incidence of arterial hypertension and diabetes in the control group. mRNA level of cannabinoid receptors was significantly higher in aneurysms than in controls. Concentration of the endocannabinoid 2-arachidonoylglycerol was significantly higher, while the second endocannabinoid anandamide and its metabolite arachidonic acid and palmitoylethanolamide were significantly lower in aneurysms. Histology revealed persistent infiltration of newly recruited leukocytes and significantly higher mononuclear cell density in adventitia of the aneurysms. Proinflammatory environment in aneurysms was shown by significant upregulation of M-CSF and PPARÎł but associated with downregulation of chemokines. We found comparable collagen-stained area between the groups, significantly decreased mRNA level of CTGF, osteopontin-1, and MMP-2, and increased TIMP-4 expression in aneurysms. Our data provides evidence for endocannabinoid system activation in human aortic aneurysms, associated with persistent low-level inflammation and vascular remodeling
Evaluating multicenter DTI data in Huntington's disease on site specific effects:an ex post facto approach
Purpose: Assessment of the feasibility to average diffusion tensor imaging (DTI) metrics of MRI data acquired in the course of a multicenter study.Materials and methods: Sixty-one early stage Huntington's disease patients and forty healthy controls were studied using four different MR scanners at four European sites with acquisition protocols as close as possible to a given standard protocol. The potential and feasibility of averaging data acquired at different sites was evaluated quantitatively by region-of-interest (ROI) based statistical comparisons of coefficients of variation (CV) across centers, as well as by testing for significant group-by-center differences on averaged fractionalanisotropy (FA) values between patients and controls. In addition, a whole-brain based statistical between-group comparison was performed using FA maps.Results: The ex post facto statistical evaluation of CV and FA-values in a priori defined ROIs showed no differences between sites above chance indicating that data were not systematically biased by center specific factors.Conclusion: Averaging FA-maps from DTI data acquired at different study sites and different MR scanner types does not appear to be systematically biased. A suitable recipe for testing on the possibility to pool multicenter DTI data is provided to permit averaging of DTI-derived metrics to differentiate patients from healthy controls at a larger scale