12 research outputs found

    How accurate is MRI for diagnosing tarsal coalitions? A retrospective diagnostic accuracy study

    Get PDF
    OBJECTIVES This study aimed to evaluate the diagnostic accuracy, inter-reader agreement, and associated pathologies on MR images of patients with confirmed TC. METHODS AND MATERIALS In this retrospective study, 168 ankle MRI exams were included, consisting of 56 patients with clinically or surgically confirmed TC and 112 controls without TC, matched for age and sex. Images were analyzed independently by three radiologists blinded to clinical information. The evaluation criteria included the presence, type, and location of TC, as well as associated pathologies. After calculating diagnostic accuracy and the odds ratio of demographic data and anatomic coalition type for associated pathologies, inter-reader agreement was assessed using kappa statistics. RESULTS The majority of TCs were non-osseous (91.1%) and located at the calcaneonavicular (33.9%) or talocalcaneal joint (66.1%). Associated pathologies included adjacent and distant bone marrow edema (57.1% and 25.0%), osteochondral defect of the talar dome (OCD, 19.6%), and joint effusion (10.7%) and accessory anterolateral talar facet (17.9%). Talar OCD was associated with increased patient age (p = 0.03). MRI exhibited a cumulative sensitivity and specificity of 95.8% and 94.3% with almost perfect inter-reader agreement (κ = 0.895). CONCLUSION MRI is a reliable method for detecting tarsal coalition and identifying commonly associated pathologies. Therefore, we recommend the routine use of MRI in the diagnostic workup of patients with foot pain and suspected tarsal coalition. CLINICAL RELEVANCE STATEMENT MRI is an accurate and reliable modality for diagnosing tarsal coalitions and detecting associated pathologies, while improving patient safety compared to computed tomography by avoiding radiation exposure. KEY POINTS • Despite the technological progress in magnetic resonance imaging (MRI), computed tomography (CT) is still regarded as the gold standard for diagnosing tarsal coalition (TC). • MRI had a cumulative sensitivity of 95.8% and specificity of 94.3% for detecting tarsal coalition with an almost perfect inter-reader agreement. • MRI demonstrates high accuracy and reliability in diagnosing tarsal coalitions and is useful for identifying associated pathologies, while also improving patient safety by avoiding radiation exposure

    7 T MRI of the Cervical Neuroforamen: Assessment of Nerve Root Compression and Dorsal Root Ganglia in Patients With Radiculopathy

    Get PDF
    OBJECTIVES: The aim of this study was to assess the diagnostic value of 3-dimensional dual-echo steady-state (DESS) magnetic resonance imaging (MRI) of the cervical spine at 7 T compared with 3 T in patients with cervical radiculopathy. MATERIALS AND METHODS: Patients diagnosed with cervical radiculopathy were prospectively recruited between March 2020 and January 2023 before undergoing surgical decompression and received 3-dimensional DESS imaging at 3 T and 7 T MRI. Cervical nerve root compression and the dimensions of the dorsal root ganglia were assessed by 2 radiologists independently. Signal intensity, visibility of nerve anatomy, diagnostic confidence, and image artifacts were evaluated with Likert scales. The degree of neuroforaminal stenosis was assessed on standard clinical 3 T scans. Statistics included the analysis of the diagnostic accuracy and interreader reliability. The Wilcoxon signed rank test was used to assess differences between the groups. RESULTS: Forty-eight patients (mean age, 57 ± 12 years; 22 women) were included in the study with the highest prevalence of severe neuroforaminal stenosis observed at C6 (n = 68) followed by C7 (n = 43). Direct evaluation of nerve root compression showed significantly higher diagnostic confidence and visibility of cervical nerve rootlets, roots, and dorsal root ganglia on 7 T DESS than on 3 T DESS (diagnostic confidence: P = 0.01, visibility: P < 0.01). Assessment of nerve root compression using 7 T DESS allowed more sensitive grading than standard clinical MRI (P < 0.01) and improved the performance in predicting sensory or motor dysfunction (area under the curve combined: 0.87). CONCLUSIONS: 7 T DESS imaging allows direct assessment of cervical nerve root compression in patients with radiculopathy, with a better prediction of sensory or motor dysfunction than standard clinical MRI. Diagnostic confidence and image quality of 7 T DESS were superior to 3 T DESS

    Fat Fractions of the Rotator Cuff Muscles Acquired With 2-Point Dixon MRI: Predicting Outcome After Arthroscopic Rotator Cuff Repair

    Get PDF
    OBJECTIVES The aim of this study was to quantify and compare fat fraction (FF) and muscle volume between patients with failed and intact rotator cuff (RC) repair as well as a control group with nonsurgical conservative treatment to define FF cutoff values for predicting the outcome of RC repair. MATERIALS AND METHODS Patients with full-thickness RC tears who received magnetic resonance imaging (MRI) before and after RC repair including a 2-point Dixon sequence were retrospectively screened. Patients with retear of 1 or more tendons diagnosed on MRI (Sugaya IV-V) were enrolled and matched to patients with intact RC repair (Sugaya I-II) and to a third group with conservatively treated RC tears. Two radiologists evaluated morphological features (Cofield, Patte, and Goutallier), as well as the integrity of the RC after repair (Sugaya). Fat fractions were calculated from the 2-point Dixon sequence, and the RC muscles were segmented semiautomatically to calculate FFs and volume for each muscle. Receiver operator characteristics curves were used to determine FF cutoff values that best predict RC retears. RESULTS In total, 136 patients were enrolled, consisting of 3 groups: 41 patients had a failed RC repair (58 ± 7 years, 16 women), 50 patients matched into the intact RC repair group, and 45 patients were matched into the conservative treatment group. Receiver operator characteristics curves showed reliable preoperative FF cutoff values for predicting retears at 6.0% for the supraspinatus muscle (0.83 area under the curve [AUC]), 7.4% for the infraspinatus muscle (AUC 0.82), and 8.3% for the subscapularis muscle (0.94 AUC). CONCLUSIONS Preoperative quantitative FF calculated from 2-point Dixon MRI can be used to predict the risk of retear after arthroscopic RC repair with cutoff values between 6% and 8.3%

    Dark-field X-ray imaging for the assessment of osteoporosis in human lumbar spine specimens

    Get PDF
    Background: Dark-field imaging is a novel imaging modality that allows for the assessment of material interfaces by exploiting the wave character of x-ray. While it has been extensively studied in chest imaging, only little is known about the modality for imaging other tissues. Therefore, the purpose of this study was to evaluate whether a clinical X-ray dark-field scanner prototype allows for the assessment of osteoporosis.Materials and methods: In this prospective study we examined human cadaveric lumbar spine specimens (vertebral segments L2 to L4). We used a clinical prototype for dark-field radiography that yields both attenuation and dark-field images. All specimens were scanned in lateral orientation in vertical and horizontal position. All specimens were additionally imaged with CT as reference. Bone mineral density (BMD) values were derived from asynchronously calibrated quantitative CT measurements. Correlations between attenuation signal, dark-field signal and BMD were assessed using Spearman’s rank correlation coefficients. The capability of the dark-field signal for the detection of osteoporosis/osteopenia was evaluated with receiver operating characteristics (ROC) curve analysis.Results: A total of 58 vertebrae from 20 human cadaveric spine specimens (mean age, 73 years ±13 [standard deviation]; 11 women) were studied. The dark-field signal was positively correlated with the BMD, both in vertical (r = 0.56, p &lt; .001) and horizontal position (r = 0.43, p &lt; .001). Also, the dark-field signal ratio was positively correlated with BMD (r = 0.30, p = .02). No correlation was found between the signal ratio of attenuation signal and BMD (r = 0.14, p = .29). For the differentiation between specimens with and without osteoporosis/osteopenia, the area under the ROC curve (AUC) was 0.80 for the dark-field signal in vertical position.Conclusion: Dark-field imaging allows for the differentiation between spine specimens with and without osteoporosis/osteopenia and may therefore be a potential biomarker for bone stability

    Photon-Counting Detector CT Versus Energy-Integrating Detector CT of the Lumbar Spine: Comparison of Radiation Dose and Image Quality

    Full text link
    BACKGROUND. Photon-counting detector (PCD) CT could be useful to help address the typically high radiation doses of conventional energy-integrating detector (EID) CT of the lumbar spine. OBJECTIVE. The purpose of our study was to compare PCD CT and EID CT of the lumbar spine, both performed using tin filtration, in terms of radiation dose and image quality. METHODS. This study included a prospective sample of 39 patients (22 men, 17 women; mean age, 27.2 years) who underwent investigational PCD CT of the lumbar spine as part of a separate study and a retrospective sample of 39 patients (22 men, 17 women; mean age, 34.9 years) who underwent clinically indicated EID CT of the lumbar spine. In both groups, all examinations were performed using unenhanced technique with tin prefiltration between June 2022 and January 2023. Patients were matched between groups using age, sex, and BMI. A custom gaussian curve-fitting algorithm was used to automatically calculate image noise, SNR, and CNR for each examination, on the basis of all voxels within the image set. Three radiologists independently reviewed examinations to perform a subjective visual assessment of visualization of trabecular architecture, cortical bone, neuroforaminal content, paraspinal muscles, and intervertebral disk, as well as overall image quality, using a 4-point Likert scale (1 = poor, 4 = excellent). PCD CT and EID CT examinations were compared. RESULTS. Mean CTDIvol_{vol} was 4.4 ± 1.0 (SD) mGy for PCD CT versus 11.1 ± 1.9 mGy for EID CT (p .05). PCD CT, in comparison with EID CT, showed significantly higher CNR (mean ± SD, 33.6 ± 3.3 vs 29.3 ± 4.1; p .05). CONCLUSION. PCD CT, in comparison with EID CT, yielded significantly lower radiation dose with preserved image quality. CLINICAL IMPACT. The findings support expanded use of PCD CT for lumbar spine evaluation

    Superolateral Hoffa fat pad edema in adolescent competitive alpine skiers: temporal evolution over 4 years and risk factors

    No full text
    Abstract Objectives To longitudinally assess and correlate the prevalence of superolateral Hoffa fat pad (SHFP) edema with changes in features of the knee extensor mechanism in adolescent competitive alpine skiers over 48 months. Methods Competitive alpine skiers were prospectively enrolled in 2018 and underwent bilateral knee MRI at baseline and after 48 months. MRI was assessed for the prevalence of SHFP edema. Features of the knee extensor mechanism were assessed by measuring the trochlear sulcus angle and depth, lateral and medial trochlear inclination, trochlear angle, patella tilt, Insall‒Salvati ratio (ISR), and patellar ligament to lateral trochlear facet (PL-T) distance. Separate logistic regression models were used to calculate the odds ratios between each measurement and the presence of SHFP edema at both time points. Results Sixty-three athletes were included in the study (mean age 15.3 ± 1.3 years, 25 women). At baseline, 23 knees had SHFP edema, increasing to 34 knees at the 48-month follow-up. At baseline, knees with measurements in the highest quartile for ISR and lowest quartile for trochlear depth and PL-T were 9.3, 5.1, and 7.7 times more likely to show SHFP edema, respectively. At follow-up, these correlations were confirmed and additionally, knees with measurements in the highest quartile for trochlear sulcus angle and the lowest quartile for lateral trochlear inclination were 4.1 and 3.4 times more likely to show SHFP edema. Conclusion An increased prevalence of SHFP edema in competitive alpine skiers during adolescence was associated with persistent high-riding patella, reduced patellar ligament to trochlear distance, and flattened lateral trochlear facet. Critical relevance statement In clinical routine, assessment of the mechanical properties of the knee extensor mechanism, together with anatomical developments during adolescence, may improve the understanding and management of patellofemoral instability. Key points • Superolateral Hoffa fat pad (SHFP) edema is a frequent cause of anterolateral knee pain but the role of predisposing factors is still debated. • A higher prevalence of SHFP edema was associated with high-riding patella, reduced patellar ligament to trochlear distance, and flattened lateral trochlear facet. • Understanding of the mechanical interaction and the anatomical development of the knee during adolescence provides further insight into the development of SHFP edema. Graphical Abstrac

    Associations of Texture Features of Proton Density Fat Fraction Maps between Lumbar Vertebral Bone Marrow and Paraspinal Musculature

    No full text
    Chemical shift encoding-based water&ndash;fat MRI (CSE-MRI)-derived proton density fat fraction (PDFF) has been used for non-invasive assessment of regional body fat distributions. More recently, texture analysis (TA) has been proposed to reveal even more detailed information about the vertebral or muscular composition beyond PDFF. The aim of this study was to investigate associations between vertebral bone marrow and paraspinal muscle texture features derived from CSE-MRI-based PDFF maps in a cohort of healthy subjects. In this study, 44 healthy subjects (13 males, 55 &plusmn; 30 years; 31 females, 39 &plusmn; 17 years) underwent 3T MRI including a six-echo three-dimensional (3D) spoiled gradient echo sequence used for CSE-MRI at the lumbar spine and the paraspinal musculature. The erector spinae muscles (ES), the psoas muscles (PS), and the vertebral bodies L1-4 (LS) were manually segmented. Mean PDFF values and texture features were extracted for each compartment. Features were compared between males and females using logistic regression analysis adjusted for age and body mass index (BMI). All texture features of ES except for Sum Average were significantly (p &lt; 0.05) different between men and women. The three global texture features (Variance, Skewness, Kurtosis) for PS as well as LS showed a significant difference between male and female subjects (p &lt; 0.05). Mean PDFF measured in PS and ES was significantly higher in females, but no difference was found for the vertebral bone marrow&rsquo;s PDFF. Partial correlation analysis between the texture features of the spine and the paraspinal muscles revealed a highly significant correlation for Variance(global) (r = 0.61 for ES, r = 0.62 for PS; p &lt; 0.001 respectively). Texture analysis using PDFF maps based on CSE-MRI revealed differences between healthy male and female subjects. Global texture features in the lumbar vertebral bone marrow allowed for differentiation between men and women, when the overall PDFF was not significantly different, indicating that PDFF maps may contain detailed and subtle textural information beyond fat fraction. The observed significant correlation of Variance(global) suggests a metabolic interrelationship between vertebral bone marrow and the paraspinal muscles

    Associations between Bone Mineral Density and Longitudinal Changes of Vertebral Bone Marrow and Paraspinal Muscle Composition Assessed Using MR-Based Proton Density Fat Fraction and T2* Maps in Patients with and without Osteoporosis

    No full text
    Background: Proton-density fat fraction (PDFF) and T2* of the vertebrae, as well as the cross-sectional area (CSA) of the paraspinal musculature (PSM), have been suggested as biomarkers for bone fragility. The aim of this study was to longitudinally assess changes in PDFF, T2* and CSA of the PSM over 6 months in patients with and without osteoporosis. Methods: Opportunistic bone mineral density (BMD) measurements (BMD &lt; 120 mg/cm3) were obtained from a CT acquired during the clinical routine work up in osteoporotic/osteopenic patients (n = 29, mean age 72.37 &plusmn; 10.12 years, 16 women). These patients were frequency-matched for age and sex to subjects with normal BMD values (n = 29). All study patients underwent 3T MR imaging at baseline and 6-month follow up, including spoiled gradient echo sequences for chemical shift encoding-based water-fat separation, from which T2* and PDFF values of the lumbar spine and the PSM were obtained. Moreover, the CSA of the PSM was assessed longitudinally. Changes in T2*, PDFF and CSA over 6 months were calculated for the vertebrae and PSM and associations with baseline BMD values were assessed. Results: The change in CSA of the PSM over 6 months was significantly lower in the osteoporotic/osteopenic group (&minus;91.5 &plusmn; 311.7 mm2), compared to the non-osteoporotic group, in which the CSA increased (29.9 &plusmn; 164.0 mm2, p = 0.03). In a further analysis, patients with higher vertebral PDFF at baseline showed a significantly stronger increase in vertebral T2*, compared to those patients with lower vertebral PDFF at baseline (0.9 &plusmn; 1.6 ms vs. 0.0 &plusmn; 1.8 ms, p = 0.04). Moreover, patients with higher PSM PDFF at baseline showed a significantly stronger increase in vertebral T2*, compared to those patients with lower PSM PDFF at baseline (0.9 &plusmn; 2.0 ms vs. 0.0 &plusmn; 1.3 ms, p = 0.03). Conclusion: The PSM CSA decreased significantly longitudinally in patients with osteoporosis/osteopenia, compared to those without. Additionally, higher vertebral and PSM PDFF at baseline were associated with stronger changes in vertebral bone marrow T2*. Therefore, longitudinal PDFF and T2* mapping may be useful quantitative radiation-free tools for the assessment and prediction of muscle and bone health in patients with suspected osteoporosis/osteopenia
    corecore