105 research outputs found

    European Apportionment via the Cambridge Compromise

    Full text link
    Seven mathematicians and one political scientist met at the Cambridge Apportionment Meeting in January 2011. They agreed a unanimous recommendation to the European Parliament for its future apportionments between the EU Member States. This is a short factual account of the reasons that led to the Meeting, of its debates and report, and of some of the ensuing Parliamentary debate.Comment: Minor changes. Short analysis added in the final sectio

    Self-avoiding walks and amenability

    Full text link
    The connective constant μ(G)\mu(G) of an infinite transitive graph GG is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work. Various properties of connective constants depend on the existence of so-called 'graph height functions', namely: (i) whether μ(G)\mu(G) is a local function on certain graphs derived from GG, (ii) the equality of μ(G)\mu(G) and the asymptotic growth rate of bridges, and (iii) whether there exists a terminating algorithm for approximating μ(G)\mu(G) to a given degree of accuracy. In the context of amenable groups, it is proved that the Cayley graphs of infinite, finitely generated, elementary amenable groups support graph height functions, which are in addition harmonic. In contrast, the Cayley graph of the Grigorchuk group, which is amenable but not elementary amenable, does not have a graph height function. In the context of non-amenable, transitive graphs, a lower bound is presented for the connective constant in terms of the spectral bottom of the graph. This is a strengthening of an earlier result of the same authors. Secondly, using a percolation inequality of Benjamini, Nachmias, and Peres, it is explained that the connective constant of a non-amenable, transitive graph with large girth is close to that of a regular tree. Examples are given of non-amenable groups without graph height functions, of which one is the Higman group.Comment: v2 differs from v1 in the inclusion of further material concerning non-amenable graphs, notably an improved lower bound for the connective constan

    Cluster detection in networks using percolation

    Full text link
    We consider the task of detecting a salient cluster in a sensor network, that is, an undirected graph with a random variable attached to each node. Motivated by recent research in environmental statistics and the drive to compete with the reigning scan statistic, we explore alternatives based on the percolative properties of the network. The first method is based on the size of the largest connected component after removing the nodes in the network with a value below a given threshold. The second method is the upper level set scan test introduced by Patil and Taillie [Statist. Sci. 18 (2003) 457-465]. We establish the performance of these methods in an asymptotic decision- theoretic framework in which the network size increases. These tests have two advantages over the more conventional scan statistic: they do not require previous information about cluster shape, and they are computationally more feasible. We make abundant use of percolation theory to derive our theoretical results, and complement our theory with some numerical experiments.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ412 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore