128 research outputs found
Regulating the Motor for GLUT4 Vesicle Traffic
Insulin-triggered trafficking of GLUT4 glucose transporter-loaded vesicles and their fusion with the plasma membrane are mechanical processes involving multiprotein complexes that coordinate and facilitate vesicle movement. Now, Yip et al. (2008) link myosin-1c to insulin signaling by demonstrating direct CaMKII-driven phosphorylation of this critical motor protein
Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step
SummaryA hypothesis that accounts for most of the available literature on insulin-stimulated GLUT4 translocation is that insulin action controls the access of GLUT4 vesicles to a constitutively active plasma-membrane fusion process. However, using an in vitro fusion assay, we show here that fusion is not constitutively active. Instead, the rate of fusion activity is stimulated 8-fold by insulin. Both the magnitude and time course of stimulated in vitro fusion recapitulate the cellular insulin response. Fusion is cell cytoplasm and SNARE dependent but does not require cell cytoskeleton. Furthermore, insulin activation of the plasma-membrane fraction of the fusion reaction is the essential step in regulation. Akt from the cytoplasm fraction is required for fusion. However, the participation of Akt in the stimulation of in vitro fusion is dependent on its in vitro recruitment onto the insulin-activated plasma membrane
Insulin regulates Rab3-Noc2 complex dissociation to promote GLUT4 translocation in rat adipocytes.
AIMS/HYPOTHESIS: The glucose transporter GLUT4 is present mainly in insulin-responsive tissues of fat, heart and skeletal muscle and is translocated from intracellular membrane compartments to the plasma membrane (PM) upon insulin stimulation. The transit of GLUT4 to the PM is known to be dependent on a series of Rab proteins. However, the extent to which the activity of these Rabs is regulated by the action of insulin action is still unknown. We sought to identify insulin-activated Rab proteins and Rab effectors that facilitate GLUT4 translocation. METHODS: We developed a new photoaffinity reagent (Bio-ATB-GTP) that allows GTP-binding proteomes to be explored. Using this approach we screened for insulin-responsive GTP loading of Rabs in primary rat adipocytes. RESULTS: We identified Rab3B as a new candidate insulin-stimulated G-protein in adipocytes. Using constitutively active and dominant negative mutants and Rab3 knockdown we provide evidence that Rab3 isoforms are key regulators of GLUT4 translocation in adipocytes. Insulin-stimulated Rab3 GTP binding is associated with disruption of the interaction between Rab3 and its negative effector Noc2. Disruption of the Rab3-Noc2 complex leads to displacement of Noc2 from the PM. This relieves the inhibitory effect of Noc2, facilitating GLUT4 translocation. CONCLUSIONS/INTERPRETATION: The discovery of the involvement of Rab3 and Noc2 in an insulin-regulated step in GLUT4 translocation suggests that the control of this translocation process is unexpectedly similar to regulated secretion and particularly pancreatic insulin-vesicle release
Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMP-activated protein kinase activators in L6 myotubes.
In L6 myotubes, redistribution of a hemagglutinin (HA) epitope-tagged GLUT4 (HA-GLUT4) to the cell surface occurs rapidly in response to insulin stimulation and AMP-activated protein kinase (AMPK) activation. We have examined whether these separate signaling pathways have a convergent mechanism that leads to GLUT4 mobilization and to changes in GLUT4 recycling. HA antibody uptake on GLUT4 in the basal steady state reached a final equilibrium level that was only 81% of the insulin-stimulated level. AMPK activators (5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and A-769662) led to a similar level of antibody uptake to that found in insulin-stimulated cells. However, the combined responses to insulin stimulation and AMPK activation led to an antibody uptake level of approximately 20% above the insulin level. Increases in antibody uptake due to insulin, but not AICAR or A-769662, treatment were reduced by both wortmannin and Akt inhibitor. The GLUT4 internalization rate constant in the basal steady state was very rapid (0.43 min(-1)) and was decreased during the steady-state responses to insulin (0.18 min(-1)), AICAR (0.16 min(-1)), and A-769662 (0.24 min(-1)). This study has revealed a nonconvergent mobilization of GLUT4 in response to activation of Akt and AMPK signaling. Furthermore, GLUT4 trafficking in L6 muscle cells is very reliant on regulated endocytosis for control of cell surface GLUT4 levels
Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-14b is Retrograde
We present observations of the Rossiter-McLaughlin effect for two exoplanetary systems, revealing the orientations of their orbits relative to the rotation axes of their parent stars. HAT-P-4b is prograde, with a sky-projected spin-orbit angle of λ = –4.9 ± 11.9 deg. In contrast, HAT-P-14b is retrograde, with λ = 189.1 ± 5.1 deg. These results conform with a previously noted pattern among the stellar hosts of close-in giant planets: hotter stars have a wide range of obliquities and cooler stars have low obliquities. This, in turn, suggests that three-body dynamics and tidal dissipation are responsible for the short-period orbits of many exoplanets. In addition, our data revealed a third body in the HAT-P-4 system, which could be a second planet or a companion star
Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-P-14b is Retrograde
We present observations of the Rossiter-McLaughlin effect for two
exoplanetary systems, revealing the orientations of their orbits relative to
the rotation axes of their parent stars. HAT-P-4b is prograde, with a
sky-projected spin-orbit angle of lambda = -4.9 +/- 11.9 degrees. In contrast,
HAT-P-14b is retrograde, with lambda = 189.1 +/- 5.1 degrees. These results
conform with a previously noted pattern among the stellar hosts of close-in
giant planets: hotter stars have a wide range of obliquities and cooler stars
have low obliquities. This, in turn, suggests that three-body dynamics and
tidal dissipation are responsible for the short-period orbits of many
exoplanets. In addition, our data revealed a third body in the HAT-P-4 system,
which could be a second planet or a companion star.Comment: AJ, in press [8 pages
- …