141 research outputs found

    A computer model to simulate scoliosis surgery

    Get PDF
    Use of patient-specific computer models as a pre-operative planning tool permits predictions of the likely deformity correction and allows a more detailed investigation of the biomechanical influence of different surgical procedures on the scoliotic spinal anatomy. In this paper, patient-specific computer models are used of adolescent idiopathic scoliosis patients who underwent a single rod anterior procedure at the Mater Children’s Hospital in Brisbane, to predict deformity correction and to investigate the change in biomechanics of the scoliotic spine due to surgical compressive forces applied during implant placement

    Postoperative low dose CT assessment of interbody fusion two years after thoracoscopic scoliosis surgery

    Get PDF
    The relationship between radiologic union and clinical outcomes in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate for the first time the interbody fusion rates using low dose CT scans at minimum 24 months after thoracoscopic scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) implant failure, and (v) lateral position in the disc space. The study found that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery

    Is the iPhone an accurate and useful tool for the monitoring of spinal deformity?

    Get PDF
    The progression of spinal deformity is traditionally monitored by spinal surgeons using the Cobb method on hardcopy radiographs with a protractor and pencil. The rotation of the spine and ribcage (rib hump) in scoliosis is measured with a simple hand-held inclinometer (Scoliometer). The iPhone and other smart phones have the capability to accurately sense inclination, and can therefore be used to measure Cobb angles and rib hump angulation. The purpose of this study was to quantify the performance of the iPhone compared to a standard protractor for measuring Cobb angles and the Scoliometer for measuring rib humps. The study concluded that the iPhone is a clinically equivalent measuring tool to the traditional protractor and Scoliomete

    Biomechanical performance of polycaprolactone (PCL)-based scaffold with rhBMP-2 in a sheep thoracic spine fusion model

    Get PDF
    Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. Resulting spine deformities include progressive coronal curvature, hypokyphosis, or frank lordosis in the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral discs have been surgically cleared and the disc spaces filled with graft material. Problems with bone graft harvest site morbidity as well as limited bone availability have led to the search for bone graft substitutes. Recently, a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone (PCL) has been developed for bone regeneration at load bearing sites. Combined with recombinant human bone morphogenic protein–2 (rhBMP-2), this has been shown to be successful in acting as a bone graft substitute in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft. This in vivo sheep study intends to evaluate the suitability of a custom designed medical grade PCL scaffold in combination with rhBMP-2 as a bone graft substitute in the setting of mini–thoracotomy surgery as a platform for ongoing research to benefit patients with adolescent idiopathic scoliosis

    Maintenance of spine flexibility with the use of semi-constrained growing rods for early onset scoliosis in children

    Get PDF
    The growing rod (GR) technique is a fusionless surgical approach to reduce and control deformity whilst allowing the young spine to grow in early onset scoliosis. Original GR designs have resulted in a high rate of rod fracture and auto-fusion of the spine. An earlier biomechanical study has shown that semi-constrained GR allow similar axial rotation of the instrumented spine to that of an un-instrumented spine. Results indicated that the semi-constrained GR system was effective and allowed regular lengthening procedures. This new concept of GR may provide a greater deformity correction by limiting the chance of auto-fusion. A larger number of patients are required to confirm the superiority of semi-constrained GR and their ability to maintain spine mobility during GR treatment

    The vertebral body growth plate in scoliosis: a primary disturbance of growth?

    Get PDF
    Study Design and Aims: This was an observational pilot study of the vertebral body growth plates in scoliosis involving high-resolution coronal plane magnetic resonance (MR) imaging and histological examination. One aim of this study was to determine whether vertebral body growth plates in scoliosis demonstrated abnormalities on MR imaging. A second aim was to determine if a relationship existed between MR and histological abnormalities in these vertebral body growth plates. Methods: MR imaging sequences of 18 patients demonstrated the vertebralbody growth plates well enough to detect gross abnormalities/ deficient areas/zones. Histological examination of ten vertebral body growth plates removed during routine scoliosis surgery was performed. Observational histological comparison with MR images was possible in four cases. Results: Four of the 18 MR images demonstrated spines with normal curvature and normal vertebral body growth plates. In 13 scoliotic spines, convex and concave side growth plate deficiencies were observed most frequently at or near the apex of the curve. One MR image demonstrated a 55° kyphosis and no convex or concave side deficiencies. The degree of vertebral body wedging was independent of the presence of vertebral body growth plate deficiency. Histological abnormalities of the vertebral body growth plates were demonstrated in four with MR imaging abnormalities. Conclusion: This study demonstrated MR image abnormalities of scoliotic vertebral body growth plates compared to controls. A qualitative relationship was demonstrated between MR imaging and histological abnormalities. The finding that vertebral body growth plate deficiencies occurred both on the convex and concave sides of the spine, closest to the apical vertebra of the scoliosis curve, implied that they are less likely to be the result of adaptive changes to the physical forces involved in the scoliotic deformity. One explanation is that they represent a primary disturbance of growth

    Patient-Specific Finite Element Analysis of Single Rod Adolescent Idiopathic Scoliosis Surgery

    Get PDF
    This paper presents a methodology for development of patient-specific finite element methods to predict the biomechanical outcomes of scoliosis surgery pre-operatively, with the aim of optimising the performance of instrumentation constructs for anterior single rod AIS surgery. The patient-specific finite element approach is an emerging technology still under development, but has potential to predict surgical correction, compliance of the surgically altered spine, and internal stress/strain in both the osseoligamentous spine and the rod/screw instrumentation system

    CT Based Volumetric Reconstruction of the Pulmonary System in Scoliosis

    Get PDF
    Scoliosis has been associated with reduced pulmonary capacity, however the source of the reduction in capacity (left, right or both lungs) is not clear. The objective of this study was to investigate trends in left, right and total lung volume and left/right lung volume asymmetry with spinal curve severity in scoliosis. Three-dimensional volumetric reconstruction of the pulmonary system was performed on existing pre-operative CT scans for 28 idiopathic scoliosis patients. Left, right and total lung volumes, and left/right lung volume ratios were calculated and correlated with the following spinal curve parameters; major Cobb angle, rib hump, number of vertebrae in the major curve, most cephalad vertebra in the major curve, and thoracic kyphosis. Left/right lung volume ratio increases significantly with increasing rib hump. Left, right and total lung volumes were significantly correlated with rib hump and number of vertebrae in the major curve (P<0.05), and near-significantly correlated with most cephalad vertebra in the major curve (P<0.10). Shorter, higher, more rotated thoracic curves therefore restrict lung volume more than longer, lower, less rotated curves. The mean lung volume ratio for scoliosis patients was lower than for age-matched controls (P<0.10). CT-based volumetric reconstruction of the pulmonary system in scoliosis patients shows differences in both lung volumes and lung volume ratios compared to normal controls

    The biomechanical effects of thoracic spine stapling

    Get PDF
    The use of anterior vertebral staples in the fusionless correction of scoliosis has received increased attention in recent literature. Several animal studies have shown stapling to be effective in modulating vertebral growth. In 2005 Betz (1) published the only clinical series to date. Despite the increasing volume of literature suggesting the efficacy of this treatment, little is known about it's biomechanical consequences. In 2007 Puttlitz (2) measured the change in spinal range of motion after staple insertion in a bovine model. They found a small but statistically significant decrease in range of motion in axial rotation and lateral bending. The clinical significance of this is questionable as the differences were only a few degrees over three vertebral levels. A well designed biomechanical evaluation of the effects of staple insertion on spinal stability is needed. The aim of this study was to evaluate the effect of insertion of a laterally placed anterior vertebral staple on the stiffness characteristics of a single motion segment. These results suggest that staple insertion consistently decreased stiffness in all directions of motion. This is contrary to the results of Puttlitz (2), which reported a reduced range of motion (i.e. increased stiffness) for some motions using moment-controlled testing. This decrease in stiffness could not be explained by changes in anatomy or tissue properties between specimens, as each stapled motion segment was compared with its own intact state. Addition of the staple would intuitively be expected to increase motion segment stiffness, however we suggest that the staple prongs may cause sufficient disruption to the vertebral bodies and endplates to slightly reduce overall stiffness. Hence, growth modulation may be achieved through physical disruption of the endplate, rather than static mechanical stress. Further research is planned to investigate the proportion of load carried by the staple during spinal movement and the anatomical effect of the staple on the physis. In conclusion, anterior vertebral stapling causes a slight but significant decrease in the stiffness of treated motion segments
    • …
    corecore