36 research outputs found
Dr. Faustus and free will: an alternative interpretation of Marlowe’s play
Marlowe’s play Dr. Faustus has been the subject of widely differing interpretations, most of them focused on the justice or otherwise of God. Is it a conventional morality play in which, having turned his back on God and salvation, Faustus is rightly condemned to hell? Or is Faustus a tragic hero, unfairly condemned simply for pursuing the Renaissance dream of reaching for heaven through knowledge and learning?
This thesis suggests that, in contrast to these two main streams of interpretation which both see the play as essentially theological in nature, Dr. Faustus is primarily a psychological study of a man trying to obtain certainty and meaning in his life but failing dramatically on both counts, and the consequences of that failure in the form of his growing mental anguish. At the centre of his angst is the issue of free will: do we have any control over our own salvation? And if not then how should we live our life so as to give it meaning? Faustus’ unsuccessful attempts to answer these questions are closely examined using some philosophical concepts and theories relating to free will. This close analysis of the text suggests that the dismal failure of Faustus’ attempt to resolve all theological uncertainties concerning free will and salvation by denying the existence of both is the major cause of his psychological breakdown. This failure, along with Faustus’ failure to obtain agency and control in his life through the unconstrained pursuit of his passions following his pact with the devil, point to the main focus of the play: the portrayal of a man at war with himself, torn apart by metaphysical uncertainties and the inherent limitations of what it means to be “but Faustus, and a man.
G20 2014: the G20 Brisbane Summit, inequality, energy and anti-corruption
The 12th edition of the G20 monitor contains an overview from John Lipsky on the G20’s role in global governance after the global financial crisis; a paper by Geoff Weir on the G20, Thomas Piketty, and inequality; thoughts from Hugh Jorgensen and Christian Downie on multilateral energy governance; and a piece by Charles Sampford on integrity and anti-corruption.
Key findings
Lipsky suggests the Brisbane Summit is a critical moment for the G20, if it does not restore a sense of political momentum to the process, the G20’s relevance will wane
Ever-growing inequality is inconsistent with the maintenance of an inclusive, democratic system of governance. The G20 should consider a combination of taxation, education and health reforms to reduce inequality.
The world needs better multilateral energy governance. Whether the conditions exist for the G20 to remedy this problem is unclear, but members should pursue energy governance mechanisms that promote trust
Prof. dr. Antun Bauer - inicijator i donator Zbirke Bauer i galerije umjetnina Vukovar
This article examines the profits and practices of commercial journal publishers and argues for an appropriate response from the academic community
Molecular Phylogeny of Edge Hill Virus Supports its Position in the Yellow Fever Virus Group and Identifies a New Genetic Variant
Edge Hill virus (EHV) is a mosquito-borne flavivirus isolated throughout Australia during mosquito surveillance programs. While not posing an immediate threat to the human population, EHV is a taxonomically interesting flavivirus since it remains the only member of the yellow fever virus (YFV) sub-group to be detected within Australia. Here we present both an antigenic and genetic investigation of collected isolates, and confirm taxonomic classification of the virus within the YFV-group. Isolates were not clustered based on geographical origin or time of isolation, suggesting that minimal genetic evolution of EHV has occurred over geographic distance or time within the EHV cluster. However, two isolates showed significant differences in antigenic reactivity patterns, and had a much larger divergence from the EHV prototype (19% nucleotide and 6% amino acid divergence), indicating a distinct subtype or variant within the EHV subgroup
Presence of optrA-mediated linezolid resistance in multiple lineages and plasmids of Enterococcus faecalis revealed by long read sequencing
Funding: This work was supported by the Chief Scientist Office (Scotland) through the Scottish Healthcare Associated Infection Prevention Institute (Reference SIRN/10). Bioinformatics and Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit, which is funded by a Wellcome Trust ISSF award [grant 105621/Z/14/Z].Transferable linezolid resistance due to optrA, poxtA, cfr and cfr-like genes is increasingly detected in enterococci associated with animals and humans globally. We aimed to characterize the genetic environment of optrA in linezolid-resistant Enterococcus faecalis isolates from Scotland. Six linezolid-resistant E. faecalis isolated from urogenital samples were confirmed to carry the optrA gene by PCR. Short read (Illumina) sequencing showed the isolates were genetically distinct (>13900 core SNPs) and belonged to different MLST sequence types. Plasmid contents were examined using hybrid assembly of short and long read (Oxford Nanopore MinION) sequencing technologies. The optrA gene was located on distinct plasmids in each isolate, suggesting that transfer of a single plasmid did not contribute to optrA dissemination in this collection. pTM6294-2, BX5936-1 and pWE0438-1 were similar to optrA-positive plasmids from China and Japan, while the remaining three plasmids had limited similarity to other published examples. We identified the novel Tn6993 transposon in pWE0254-1 carrying linezolid (optrA), macrolide (ermB) and spectinomycin [ANT(9)-Ia] resistance genes. OptrA amino acid sequences differed by 0–20 residues. We report multiple variants of optrA on distinct plasmids in diverse strains of E. faecalis . It is important to identify the selection pressures driving the emergence and maintenance of resistance against linezolid to retain the clinical utility of this antibiotic.Publisher PDFPeer reviewe
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
The First Post-Kepler Brightness Dips of KIC 8462852
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead