16 research outputs found

    Discovery of a Transiting Planet Near the Snow-Line

    Full text link
    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4 sigmas confidence. Kepler-421b receives the same insolation as a body at ~2AU in the Solar System and for a Uranian albedo would have an effective temperature of ~180K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ~3Myr, indicating that Kepler-421b may have formed at its observed location.Comment: 14 pages, 10 figures, 3 tables. Accepted in Ap

    Crossing the Brown Dwarf Desert Using Adaptive Optics: A Very Close L-Dwarf Companion to the Nearby Solar Analog HR 7672

    Get PDF
    We have found a very faint companion to the active solar analog HR 7672 (HD 190406; GJ 779; 15 Sge). Three epochs of high resolution imaging using adaptive optics (AO) at the Gemini-North and Keck II Telescopes demonstrate that HR 7672B is a common proper motion companion, with a separation of 0.79" (14 AU) and a 2.16 um flux ratio of 8.6 mags. Using follow-up K-band spectroscopy from Keck AO+NIRSPEC, we measure a spectral type of L4.5+/-1.5. This is the closest ultracool companion around a main sequence star found to date by direct imaging. We estimate the primary has an age of 1-3 Gyr. Assuming coevality, the companion is most likely substellar, with a mass of 55-78 Mjup based on theoretical models. The primary star shows a long-term radial velocity trend, and we combine the radial velocity data and AO imaging to set a firm (model-independent) lower limit of 48 Mjup. In contrast to the paucity of brown dwarf companions at <~4 AU around FGK dwarfs, HR 7672B implies that brown dwarf companions do exist at separations comparable to those of the giant planets in our own solar system. Its presence is at variance with scenarios where brown dwarfs form as ejected stellar embryos. Moreover, since HR 7672B is likely too massive to have formed in a circumstellar disk as planets are believed to, its discovery suggests that a diversity of physical processes act to populate the outer regions of exoplanetary systems.Comment: Astrophysical Journal, in pres

    The TRENDS High-contrast Imaging Survey. II. Direct Detection of the HD 8375 Tertiary

    Get PDF
    We present the direct imaging detection of a faint tertiary companion to the single-lined spectroscopic binary HD 8375 AB. Initially noticed as an 53 m s^–1 yr^–1 Doppler acceleration by Bowler et al., we have obtained high-contrast adaptive optics observations at Keck using NIRC2 that spatially resolve HD 8375 C from its host(s). Astrometric measurements demonstrate that the companion shares a common proper-motion. We detect orbital motion in a clockwise direction. Multiband relative photometry measurements are consistent with an early M-dwarf spectral type (~M1V). Our combined Doppler and imaging observations place a lower-limit of m ≥ 0.297 M_☉ on its dynamical mass. We also provide a refined orbit for the inner pair using recent radial velocity measurements obtained with the High Resolution Echelle Spectrometer. HD 8375 is one of many triple-star systems that are apparently missing in the solar neighborhood

    The TRENDS High-contrast Imaging Survey. I. Three Benchmark M Dwarfs Orbiting Solar-type Stars

    Get PDF
    We present initial results from a new high-contrast imaging program dedicated to stars that exhibit long-term Doppler radial velocity accelerations (or "trends"). The goal of the TRENDS (TaRgetting bENchmark-objects with Doppler Spectroscopy) imaging survey is to directly detect and study the companions responsible for accelerating their host star. In this first paper of the series, we report the discovery of low-mass stellar companions orbiting HD 53665, HD 68017, and HD 71881 using NIRC2 adaptive optics (AO) observations at Keck. Follow-up imaging demonstrates association through common proper motion. These comoving companions have red colors with estimated spectral types of K7-M0, M5, and M3-M4, respectively. We determine a firm lower limit to their mass from Doppler and astrometric measurements. In the near future, it will be possible to construct three-dimensional orbits and calculate the dynamical mass of HD 68017 B and possibly HD 71881 B. We already detect astrometric orbital motion of HD 68017 B, which has a projected separation of 13.0 AU. Each companion is amenable to AO-assisted direct spectroscopy. Further, each companion orbits a solar-type star, making it possible to infer metallicity and age from the primary. Such benchmark objects are essential for testing theoretical models of cool dwarf atmospheres

    HAT-P-50b, HAT-P-51b, HAT-P-52b, and HAT-P-53b: Three Transiting Hot Jupiters and a Transiting Hot Saturn From the HATNet Survey

    Full text link
    We report the discovery and characterization of four transiting exoplanets by the HATNet survey. The planet HAT-P-50b has a mass of 1.35 M_J and a radius of 1.29 R_J, and orbits a bright (V = 11.8 mag) M = 1.27 M_sun, R = 1.70 R_sun star every P = 3.1220 days. The planet HAT-P-51b has a mass of 0.31 M_J and a radius of 1.29 R_J, and orbits a V = 13.4 mag, M = 0.98 M_sun, R = 1.04 R_sun star with a period of P = 4.2180 days. The planet HAT-P-52b has a mass of 0.82 M_J and a radius of 1.01 R_J, and orbits a V = 14.1 mag, M = 0.89 M_sun, R = 0.89 R_sun star with a period of P = 2.7536 days. The planet HAT-P-53b has a mass of 1.48 M_J and a radius of 1.32 R_J, and orbits a V = 13.7 mag, M = 1.09 M_sun, R = 1.21 R_sun star with a period of P = 1.9616 days. All four planets are consistent with having circular orbits and have masses and radii measured to better than 10% precision. The low stellar jitter and favorable R_P/R_star ratio for HAT-P-51 make it a promising target for measuring the Rossiter-McLaughlin effect for a Saturn-mass planet.Comment: Submitted to AJ. 20 pages, 9 figures, 5 tables. Data available at http://hatnet.org

    Kepler Observations of Transiting Hot Compact Objects

    Full text link
    Kepler photometry has revealed two unusual transiting companions orbiting an early A-star and a late B-star. In both cases the occultation of the companion is deeper than the transit. The occultation and transit with follow-up optical spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a companion in a 5.2 day orbit with a radius of 0.08 Rsun and a 10000 K late B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a radius of 0.2 Rsun. We infer a temperature of 12250 K for KOI-74b and 13500 K for KOI-81b. We present 43 days of high duty cycle, 30 minute cadence photometry, with models demonstrating the intriguing properties of these object, and speculate on their nature.Comment: 12 pages, 3 figures, submitted to ApJL (updated to correct KOI74 lightcurve

    Characterizing the Orbital and Dynamical State of the HD 82943 Planetary System with Keck Radial Velocity Data

    Get PDF
    We present an updated analysis of radial velocity data of the HD 82943 planetary system based on 10 yr of measurements obtained with the Keck telescope. Previous studies have shown that the HD 82943 system has two planets that are likely in 2:1 mean-motion resonance (MMR), with orbital periods about 220 and 440 days. However, alternative fits that are qualitatively different have also been suggested, with two planets in a 1:1 resonance or three planets in a Laplace 4:2:1 resonance. Here we use χ^2 minimization combined with a parameter grid search to investigate the orbital parameters and dynamical states of the qualitatively different types of fits, and we compare the results to those obtained with the differential evolution Markov chain Monte Carlo method. Our results support the coplanar 2:1 MMR configuration for the HD 82943 system, and show no evidence for either the 1:1 or three-planet Laplace resonance fits. The inclination of the system with respect to the sky plane is well constrained at 20^(+4.9)_(-5.5) degrees, and the system contains two planets with masses of about 4.78 M_J and 4.80 M_J (where M_J is the mass of Jupiter) and orbital periods of about 219 and 442 days for the inner and outer planet, respectively. The best fit is dynamically stable with both eccentricity-type resonant angles θ_1 and θ_2 librating around 0°

    Deep Exploration of ϵ Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet

    Get PDF
    We present the most sensitive direct imaging and radial velocity (RV) exploration of epsilon Eridani to date. epsilon Eridani is an adolescent planetary system, reminiscent of the early solar system. It is surrounded by a prominent and complex debris disk that is likely stirred by one or several gas giant exoplanets. The discovery of the RV signature of a giant exoplanet was announced 15 yr ago, but has met with scrutiny due to possible confusion with stellar noise. We confirm the planet with a new compilation and analysis of precise RV data spanning 30 yr, and combine it with upper limits from our direct imaging search, the most sensitive ever performed. The deep images were taken in the Ms band (4.7 μm) with the vortex coronagraph recently installed in W.M. Keck Observatory's infrared camera NIRC2, which opens a sensitive window for planet searches around nearby adolescent systems. The RV data and direct imaging upper limit maps were combined in an innovative joint Bayesian analysis, providing new constraints on the mass and orbital parameters of the elusive planet. epsilon Eridani b has a mass of 0.78_(-0.12)^(+0.38} M_(Jup) and is orbiting epsilon Eridani at about 3.48 ± 0.02 au with a period of 7.37 ± 0.07 yr. The eccentricity of epsilon Eridani b's orbit is 0.07_(-0.05)^(+0.06), an order of magnitude smaller than early estimates and consistent with a circular orbit. We discuss our findings from the standpoint of planet–disk interactions and prospects for future detection and characterization with the James Webb Space Telescope
    corecore