32 research outputs found

    Water-exchange MRI detects subtle blood-brain barrier breakdown in Alzheimer's disease rats

    Get PDF
    Blood-brain barrier (BBB) breakdown has been hypothesized to play a key role in the onset and progression of Alzheimer's disease (AD). However, the question of whether AD itself contributes to loss of BBB integrity is still uncertain, as many in-vivo studies have failed to detect signs of AD-related BBB breakdown. We hypothesize AD-related BBB damage is subtle, and that these negative results arise from a lack of measurement sensitivity. With the aim of developing a more sensitive measure of BBB breakdown, we have designed a novel MRI scanning protocol to quantify the trans-BBB exchange of endogenous water. Using this method, we detect increased BBB water permeability in a rat model of AD that is associated with reduced expression of the tight junction protein occludin. BBB permeability to MRI contrast agent, assessed using dynamic contrast-enhanced (DCE)-MRI, did not differ between transgenic and wild-type animals and was uncorrelated with occludin expression. Our data supports the occurrence of AD-related BBB breakdown, and indicates that such BBB pathology is subtle and may be undetectable using existing ‘tracer leakage’ methods. Our validated water-exchange MRI method provides a new powerful tool with which to study BBB damage in-vivo

    Stability and reproducibility of co-electrospun brain-mimicking phantoms for quality assurance of diffusion MRI sequences

    Get PDF
    Grey and white matter mimicking phantoms are important for assessing variations in diffusion MR measures at a single time point and over an extended period of time. This work investigates the stability of brain-mimicking microfibre phantoms and reproducibility of their MR derived diffusion parameters. The microfibres were produced by co-electrospinning and characterized by scanning electron microscopy (SEM). Grey matter and white matter phantoms were constructed from random and aligned microfibres, respectively. MR data were acquired from these phantoms over a period of 33 months. SEM images revealed that only small changes in fibre microstructure occurred over 30 months. The coefficient of variation in MR measurements across all time-points was between 1.6% and 3.4% for MD across all phantoms and FA in white matter phantoms. This was within the limits expected for intra-scanner variability, thereby confirming phantom stability over 33 months. These specialised diffusion phantoms may be used in a clinical environment for intra and inter-site quality assurance purposes, and for validation of quantitative diffusion biomarkers

    A tractometry principal component analysis of white matter tract network structure and relationships with cognitive function in relapsing-remitting multiple sclerosis

    Get PDF
    Understanding the brain changes underlying cognitive dysfunction is a key priority in multiple sclerosis (MS) to improve monitoring and treatment of this debilitating symptom. Functional connectivity network changes are associated with cognitive dysfunction, but it is less well understood how changes in normal appearing white matter relate to cognitive symptoms. If white matter tracts have network structure it would be expected that tracts within a network share susceptibility to MS pathology. In the present study, we used a tractometry approach to explore patterns of variance in white matter metrics across white matter (WM) tracts, and assessed how such patterns relate to neuropsychological test performance across cognitive domains. A sample of 102 relapsing-remitting MS patients and 27 healthy controls underwent MRI and neuropsychological testing. Tractography was performed on diffusion MRI data to extract 40 WM tracts and microstructural measures were extracted from each tract. Principal component analysis (PCA) was used to decompose metrics from all tracts to assess the presence of any co-variance structure among the tracts. Similarly, PCA was applied to cognitive test scores to identify the main cognitive domains. Finally, we assessed the ability of tract co-variance patterns to predict test performance across cognitive domains. We found that a single co-variance pattern which captured microstructure across all tracts explained the most variance (65% variance explained) and that there was little evidence for separate, smaller network patterns of pathology. Variance in this pattern was explained by effects related to lesions, but one main co-variance pattern persisted after this effect was regressed out. This main WM tract co-variance pattern contributed to explaining a modest degree of variance in one of our four cognitive domains in MS. These findings highlight the need to investigate the relationship between the normal appearing white matter and cognitive impairment further and on a more granular level, to improve the understanding of the network structure of the brain in MS

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Measuring water exchange across the blood-brain barrier using MRI

    Get PDF
    The blood-brain barrier (BBB) regulates the transfer of solutes and essential nutrients into the brain. Growing evidence supports BBB dysfunction in a range of acute and chronic brain diseases, justifying the need for novel research and clinical tools that can non-invasively detect, characterize, and quantify BBB dysfunction in-vivo. Many approaches already exist for measuring BBB dysfunction in man using positron emission tomography and magnetic resonance imaging (e.g. dynamic contrast-enhanced MRI measurements of gadolinium leakage). This review paper focusses on MRI measurements of water exchange across the BBB, which occurs through a wide range of pathways, and is likely to be a highly sensitive marker of BBB dysfunction. Key mathematical models and acquisition methods are discussed for the two main approaches: those that utilize contrast agents to enhance relaxation rate differences between the intravascular and extravascular compartments and so enhance the sensitivity of MRI signals to BBB water exchange, and those that utilize the dynamic properties of arterial spin labelling to first isolate signal from intravascular spins and then estimate the impact of water exchange on the evolving signal. Data from studies in healthy and pathological brain tissue are discussed, in addition to validation studies in rodents

    Cardiac q-space trajectory imaging by motion-compensated tensor-valued diffusion encoding in human heart in vivo

    Full text link
    Purpose: Tensor-valued diffusion encoding can probe more specific features of tissue microstructure than what is available by conventional diffusion weighting. In this work, we investigate the technical feasibility of tensor-valued diffusion encoding at high b-values with q-space trajectory imaging (QTI) analysis, in the human heart in vivo. Methods: Ten healthy volunteers were scanned on a 3T scanner. We designed time-optimal gradient waveforms for tensor-valued diffusion encoding (linear and planar) with second-order motion compensation. Data were analyzed with QTI. Normal values and repeatability were investigated for the mean diffusivity (MD), fractional anisotropy (FA), microscopic FA (μFA), isotropic, anisotropic and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc). A phantom, consisting of two fiber blocks at adjustable angles, was used to evaluate sensitivity of parameters to orientation dispersion and diffusion time. Results: QTI data in the left ventricular myocardium were MD = 1.62 ± 0.07 μm2/ms, FA = 0.31 ± 0.03, μFA = 0.43 ± 0.07, MKa = 0.20 ± 0.07, MKi = 0.13 ± 0.03, MKt = 0.33 ± 0.09, and Cc = 0.56 ± 0.22 (mean ± SD across subjects). Phantom experiments showed that FA depends on orientation dispersion, whereas μFA was insensitive to this effect. Conclusion: We demonstrated the first tensor-valued diffusion encoding and QTI analysis in the heart in vivo, along with first measurements of myocardial μFA, MKi, MKa, and Cc. The methodology is technically feasible and provides promising novel biomarkers for myocardial tissue characterization.</p

    Co-electrospraying of tumour cell mimicking hollow polymeric microspheres for diffusion magnetic resonance imaging

    Full text link
    Diffusion magnetic resonance imaging (dMRI) is considered as a useful tool to study solid tumours. However, the interpretation of dMRI signal and validation of quantitative measurements of is challenging. One way to address these challenges is by using a standard reference material that can mimic tumour cell microstructure. There is a growing interest in using hollow polymeric microspheres, mainly prepared by multiple steps, as mimics of cells in healthy and diseased tissue. The present work reports on tumour cell-mimicking materials composed of hollow microspheres for application as a standard material in dMRI. These microspheres were prepared via one-step co-electrospraying process. The shell material was poly(d,l-lactic-co-glycolic acid) (PLGA) polymers with different molecule weights and/or ratios of glycolic acid-to-lactic, while the core was polyethylene glycol (PEG) or ethylene glycol. The resultant co-electrosprayed products were characterised by optical microscopy, scanning electron microscopy (SEM) and synchrotron X-ray micro-CT. These products were found to have variable structures and morphologies, e.g. from spherical particles with/without surface hole, through beaded fibres to smooth fibres, which mainly depend on PLGA composition and core materials. Only the shell material of PLGA polymer with ester terminated, Mw 50,000-75,000 g mol-1, and lactide:glycolide 85:15 formed hollow microspheres via the co-electrospraying process using the core material of 8 wt% PEG/chloroform as the core. A water-filled test object (or phantom) was designed and constructed from samples of the material generated from co-electrosprayed PLGA microspheres and tested on a 7 T MRI scanner. The preliminary MRI results provide evidence that hollow PLGA microspheres can restrict/hinder water diffusion as cells do in tumour tissue, implying that the phantom may be suitable for use as a quantitative validation and calibration tool for dMRI
    corecore