30 research outputs found

    Effect of different regions on fermentation profiles, microbial communities, and their metabolomic pathways and properties in Italian ryegrass silage

    Get PDF
    IntroductionItalian ryegrass is less studied in northern China due to high-quality forage grass has not been fully utilized. Full utilization of high-quality forage grass helps to alleviate the shortage of forage grass in winter and spring season and guarantee stable development of livestock production. Consequently, this study was aimed to evaluate the effects of different regions in northern China on the fermentative products, bacterial community compositions, and metabolic pathways and metabolites of Italian ryegrass silage.MethodsThe Italian ryegrass was harvested from three regions (Ordos-WK; Hohhot-AK; Ulanqab-SYK) and ensiled for 60 days. Single molecule real-time (SMRT) sequencing and ultra-high performance liquid chromatography-mass spectrometry (UHPLC–MS/MS) were used to analyze bacterial communities and metabolites, respectively.ResultsAfter 60 d of fermentation, the SYK group had the lowest pH (4.67), the highest lactic acid contents (95.02 g/kg DM) and largest lactic acid bacteria populations (6.66 log10 cfu/g FM) among the treatment groups. In addition, the SYK group had the highest abundance of Lactiplantibacillus plantarum (63.98%). In SYK group, isoquinoline alkaloid biosynthesis was the significantly enriched (p < 0.05) and high-impact value (0.0225) metabolic pathway. In AK group, tryptophan metabolism the was the significantly enriched (p < 0.001) and high-impact value (0.1387) metabolic pathway. In WK group, citrate cycle (TCA cycle) was the significantly enriched (p < 0.001) and high-impact value (0.1174) metabolic pathway. Further, Lactiplantibacillus plantarum was positively correlated with cinnamic acid, tetranor 12-HETE, D-Mannitol, (2S)-2-amino-4-methylpentanoic acid L-Leucine, guanine, isoleucyl-aspartate and 3,4-Dihydroxyphenyl propanoate, but negatively correlated with isocitrate and D-mannose.DiscussionIn conclusion, this study can improve our understanding of the ensiling microbiology and metabolomics in different regions to further regulate the fermentation products and promote livestock production

    Influence of drought stress on afalfa yields and nutritional composition

    No full text
    Abstract Background It is predicted that climate change may increase the risk of local droughts, with severe consequences for agricultural practices. Methods Here we report the influence of drought on alfalfa yields and nutritional composition, based on artificially induced drought conditions during two field experiments. Two types of alfalfa cultivars were compared, Gold Queen and Suntory. The severity and timing of drought periods were varied, and the crop was harvested either early during flowering, or late at full bloom. Results The obtained dry mass yields of Gold Queen were higher than Suntory, and the first was also more resistant to drought. Early harvest resulted in higher yields. Decreases in yields due to water shortage were observed with both cultivars, and the fraction of crude protein (CP) decreased as a result of drought stress; this fraction was higher in Gold Queen than in Suntory and higher in early harvest compared to late harvest. Severe drought late in spring had the highest effect on CP content. The fraction of fibre, split up into neutral detergent fibre (NDF) and acid detergent fibre (ADF) increased as a result of drought and was lower in early compared to late harvested plants. Suntory alfalfa produced higher fibre fractions than Gold Queen. The fraction of water-soluble carbohydrates (WSC) was least affected by drought. It was consistently higher in Gold Queen compared to Suntory alfalfa, and late harvest resulted in higher WSC content. Conclusions In combination, these results suggest that the nutritive value of alfalfa will likely decrease after a period of drought. These effects can be partly overcome by choosing the Gold Queen cultivar over Suntory, by targeted irrigation, in particular in late spring, and by harvesting at an earlier time

    Silage preparation and fermentation quality of natural grasses treated with lactic acid bacteria and cellulase in meadow steppe and typical steppe

    No full text
    Objective In order to improve fermentation quality of natural grasses, their silage preparation and fermentation quality in meadow steppe (MS) and typical steppe (TS) were studied. Methods The small-scale silages and round bale silages of mixed natural grasses in both steppes were prepared using the commercial lactic acid bacteria (LAB) inoculants Chikuso-1 (CH, Lactobacillus plantarum) and cellulase enzyme (AC, Acremonium cellulase) as additives. Results MS and TS contained 33 and 9 species of natural grasses, respectively. Stipa baicalensis in MS and Stipa grandi in TS were the dominant grasses with the highest dry matter (DM) yield. The crude protein (CP), neutral detergent fiber and water-soluble carbohydrate of the mixed natural grasses in both steppes were 8.02% to 9.03%, 66.75% to 69.47%, and 2.02% to 2.20% on a DM basis, respectively. All silages treated with LAB and cellulase were well preserved with lower pH, butyric acid and ammonia-N content, and higher lactic acid and CP content than those of control in four kinds of silages. Compared with CH- or AC-treated silages, the CH+ AC-treated silages had higher lactic acid content. Conclusion The results confirmed that combination with LAB and cellulase may result in beneficial effects by improving the natural grass silage fermentation in both grasslands

    Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages

    No full text
    Abstract Background Alfalfa (Medicago sativa L.) is one of the most important forage resources in the world due to its high nutritive value. However, its nutritional quality decreases during the transition from budding to flowering. Previous research revealed a decreased crude protein content and increased fibre content in alfalfa forage harvested at later maturity stages, leading to a reduction in nutritional quality. However, the reasons for this phenomenon have not been explained at the molecular level. Results In this study, leaves from the WL319HQ alfalfa cultivar were harvested at two developmental stages (budding and mid-flowering). The leaves were used to test the variable expression of proteins and metabolites during these stages. TMT-based quantitative proteomics and LC-MS/MS-based untargeted metabolomics methods were employed in this study. A total of 415 proteins and 49 metabolites showed at least a 1.2-fold difference in abundance during these stages. Most of the differentially expressed proteins and metabolites were involved in metabolic processes, including carbohydrate metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, and biosynthesis of amino acids. Alfalfa leaves in mid-flowering contain less crude protein due to the decrease in L-glutamic acid content. Carbohydrate metabolism provides the raw material for the synthesis of hemicellulose, resulting in an increase in the hemicellulose content of the alfalfa leaves, leading to an increase in the NDF content. In addition, the increase in L-phenylalanine content could have provided the conditions necessary for lignin synthesis. These are the main factors leading to reductions in alfalfa relative feed value (RFV) and quality. Conclusions This study used joint proteomic and metabolomic analyses to elucidate the relationship between the reduction in the nutritional value of alfalfa and complex biological processes. This provides a theoretical basis for producing high-quality alfalfa hay and sets the stage for further research

    Effects of salt stress levels on nutritional quality and microorganisms of alfalfa-influenced soil

    No full text
    Background Globally, there is a large amount of salinized land. These soils have varying degrees of salt stress, causing ionic toxicity and osmotic stress on plants. However, it is not clear how different degrees of salt stress affect plant nutrients and microbial communities. Thus, a comprehensive understanding of plant major nutrients and microbial communities response to salt stress is desirable. Results We analyzed the main nutrients of the salt-tolerant ZhongMu No. 3 alfalfa variety planted in a salt stress environment. In mild and moderate group, the protein content and fatty acid content of alfalfa were the highest, indicating the best nutritional value. The severe group of salt stress affected the growth and development of alfalfa, as manifested by a decrease in the nutritional quality of alfalfa. Pseudomonas and Sphingobacterium that from alfalfa stem and leaf endophytes also increased with an increase in salt stress. In contrast, Sphingomonas, Methylobacterium, and Rhizobium decrease with increasing salt stress. Methylobacterium and Rhizobium have extremely significant differences in response to salt stress, and Exiquobacterium also shows significant differences. Conclusions Soil salinity would be an important factor beyond which alfalfa nutrient quality and microbial community structure change. This study identified key levels of salt stress that may affect the nutrient quality and microbial community structure. These findings enhance our understanding of the effects of salt stress on the nutritional quality of alfalfa and provide a reference for the sustainable use of salinized soil in the future

    Effects of Replacing Alfalfa Hay with Oat Hay in Fermented Total Mixed Ration on Growth Performance and Rumen Microbiota in Lambs

    No full text
    The use of the fermented total mixed ration (FTMR) is a promising approach for the preservation of feedstuff, but the effect of FTMR on the between growth performance and ruminal microflora of lambs are still limited. This study aimed to assess the effects of different roughage types in the FTMR on growth performance and rumen microbiota of lambs. Forty-five six-month-old Small tail Han sheep × Ujumqin male lambs were randomly allocated into three groups (three pens per treatment and five lambs per pen) with the initial body weight (BW) of 28.50 ± 1.50 kg. The three treatments were as follows: the low oat percentages group (LO) contained 200 g/kg oat hay + 400 g/kg alfalfa hay, the medium oat percentages group (MO) contained 300 g/kg oat hay + 300 g/kg alfalfa hay, and the high oat percentages group (HO) contained 400 g/kg oat hay + 200 g/kg alfalfa hay. The result revealed that the dry matter intake and average daily gain were markedly (p p > 0.05) was found in the final body weight. There were no significant (p > 0.05) differences on the Shannon and Simpson index among the three treatments. The PCoA score plot illustrated the individual separation in the LO, MO, and HO treatments. At the phylum level, the presence of Bacteroidetes and Firmicutes belonging to the dominant phyla is widely described in rumen communities among the three treatments. The relative abundances of Prevotella, Fibrobacter, and Succinivibrio in the level of the genes were remarkably higher (p Sediminispirochaeta was remarkably higher (p < 0.05) in LO treatment than that in MO and HO treatments. These results indicated that the MO treatments could more effectively improve growth performance than the LO and HO treatments, and also revealed that the different forage types in diets reshaped the compositions and function of the rumen microbiota. Consequently, the findings presented in this study provide a reference for the application of FTMR in animal production and the understanding of the interaction between diet, animal performance, and ruminal microbiota

    Effects of different forage proportions in fermented total mixed ration on muscle fatty acid profile and rumen microbiota in lambs

    No full text
    ObjectiveThe objectives of this study were to evaluate the effects of different forage proportions in the fermented total mixed ration (FTMR) on growth performance, muscle fatty acid profile, and rumen microbiota of lambs.MethodsThirty 6-month-old small tail Han sheep × Ujumqin lambs with initial body weight (BW) of 27.8 ± 0.90 kg were selected for the test and divided into two groups of 15 sheep in each treatment (three pens per treatment and five lambs per pen) according to the principle of homogeneity. Two isoenergetic and isonitrogenous diets were formulated according to the NRC. The diet treatments were designed as (1) OH treatment containing 25% alfalfa hay and 35% oat hay, and (2) AH treatment containing 35% alfalfa hay with 25% oat hay. The forage-to-concentrate ratio for both diets was 65: 35 (DM basis). Three replicates were randomly selected from each treatment to determine growth performance, fatty acid profile and rumen bacterial communities in lambs.ResultsResults revealed no statistically significant (p &gt; 0.05) differences in dry matter intake and average daily gain between the two diet groups. Cholesterol and intramuscular fat were significantly (p &gt; 0.05) higher in the AH group, while no statistically significant difference (p &gt; 0.05) was found in pH24 value. The muscle fatty acid compositions of lambs were obviously (p &lt; 0.05) influenced by the diet treatments. Compared with the OH group, the C16:1, C17:0, and C20:3n6 contents were higher (p &lt; 0.05) in the AH group, whereas the content of C18:1n9c, C20:1, C18:3n3, and C22:6n3 was obviously (p &lt; 0.05) increased in the OH group. The monounsaturated fatty acid (MUFA) contents were significantly higher in the OH group, whereas no significant differences (p &gt; 0.05) were detected in saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) contents among the two diet treatments. Bacterial composition was generally separated into two clusters based on principal coordinate analysis, and the OH group had a higher Shannon index. The relative abundance at the genes level of the Rikenellaceae_RC9_gut_group was obviously (p &lt; 0.05) increased in the AH group and the relative abundances of Prevotella_1, Fibrobacter, and Bacteroidales_UCG_001_unclassified were obviously (p &lt; 0.05) enriched in the OH group. Integrated correlation analysis also underscored a possible link between the muscle fatty acid compositions and significantly altered rumen microbiota.ConclusionOverall, oat-based roughage in FTMR could promote a beneficial lipid pattern in the Longissimus lumborum muscles of lambs. These findings provide a potential insight into diet effects on fatty acid profile and the rumen microbiome of lambs, which may help make decisions regarding feeding

    Changes in microbial population and chemical composition of corn stover during field exposure and effects on silage fermentation and digestibility

    No full text
    Objective To effectively use corn stover resources as animal feed, the changes in microbial population and chemical composition of corn stover during field exposure, and their silage fermentation and in vitro digestibility were studied. Methods Corn cultivars (Jintian, Jinnuo, and Xianyu) stovers from 4 random sections of the field were harvested at the preliminary dough stage of maturity on September 2, 2015. The corn stover exposed in the field for 0, 7, 15, 30, 60, 90, and 180 d, and their silages at 60 d of ensiling were used for the analysis of microbial population, chemical composition, fermentation quality, and in vitro digestibility. Data were analyzed with a completely randomized 3Ă—6 [corn stover cultivar (C)Ă—exposure d (D)] factorial treatment design. Analysis of variance was performed using SAS ver. 9.0 software (SAS Institute Inc., Cary, NC, USA). Results Aerobic bacteria were dominant population in fresh corn stover. After ensiling, the lactic acid bacteria (LAB) became the dominant bacteria, while other microbes decreased or dropped below the detection level. The crude protein (CP) and water-soluble carbohydrate (WSC) for fresh stover were 6.74% to 9.51% and 11.75% to 13.21% on a dry matter basis, respectively. After exposure, the CP and WSC contents decreased greatly. Fresh stover had a relatively low dry matter while high WSC content and LAB counts, producing silage of good quality, but the dry stover did not. Silage fermentation inhibited nutrient loss and improved the fermentation quality and in vitro digestibility. Conclusion The results confirm that fresh corn stover has good ensiling characteristics and that it can produce silage of good quality

    Influence of Cellulase or <i>Lactiplantibacillus plantarum</i> on the Ensiling Performance and Bacterial Community in Mixed Silage of Alfalfa and <i>Leymus chinensis</i>

    No full text
    The objective of this study was to evaluate the effects of Lactiplantibacillus plantarum or cellulase on the fermentation characteristics and bacterial community of mixed alfalfa (Medicago sativa L., AF) and Leymus chinensis (LC) silage. The harvested alfalfa and Leymus chinensis were cut into 1–2 cm lengths by a crop chopper and they were thoroughly mixed at a ratio of 3/2 (wet weight). The mixtures were treated with no addition (CON), Lactiplantibacillus plantarum (LP, 1 × 106 cfu/g fresh material), cellulase (CE, 7.5 × 102 U/kg fresh material) and their combination (LPCE). The forages were packed into triplicate vacuum-sealed, polyethylene bags per treatment and ensiled for 1, 3, 5, 7 and 30 d at room temperature (17–25 °C). Compared to the CON groups, all the additives increased the lactic acid content and decreased the pH and ammonia nitrogen content over the ensiling period. In comparison to the other groups, higher water-soluble carbohydrate contents were discovered in the CE-inoculated silages. Compared to the CON groups, the treatment with LPCE retained the crude protein content and reduced the acid detergent fiber content. The principal coordinate analysis based on the unweighted UniFrac distance showed that individuals in the AF, LC, CON and LPCE treatment could be significantly separated from each other. At the genus level, the bacterial community in the mixed silage involves a shift from Cyanobacteria_unclassified to Lactobacillus. Lactobacillus dominated in all the treatments until the end of the silage, but when added with Lactiplantibacillus plantarum, it was more effective in inhibiting undesirable microorganisms, such as Enterobacter, while reducing microbial diversity. By changing the bacterial community structure after applying Lactiplantibacillus plantarum and cellulase, the mixed silages quality could be further improved. During ensiling, the metabolism of the nucleotide and carbohydrate were enhanced whereas the metabolism of the amino acid, energy, cofactors and vitamins were hindered. In conclusion, the relative abundance of Lactobacillus in the mixed silage increased with the addition of Lactiplantibacillus plantarum and cellulase, which also improved the fermentation quality

    Study on differentially expressed genes related to defoliation traits in two alfalfa varieties based on RNA-Seq

    No full text
    Abstract Background Alfalfa (Medicago sativa) is a widely cultivated, essential commercial forage crop. The protein content in its leaves is the critical factor in determining the quality of alfalfa. Thus far, the understanding of the molecular mechanism of alfalfa defoliation traits remains unclear. The transcriptome database created by RNA-Seq is used to identify critical genes related to defoliation traits. Results In this study, we sequenced the transcriptomes of the Zhungeer variety (with easy leaf abscission) and WL319HQ variety (without easy leaf abscission). Among the identified 66,734 unigenes, 706 differentially expressed genes (DEGs) upregulated, and 392 unigenes downregulated in the Zhungeer vs WL319HQ leaf. KEGG pathway annotations showed that 8,414 unigenes were annotated to 87 pathways and contained 281 DEGs. Six DEGs belonging to the “Carotenoid biosynthesis”, “Plant hormone signal transduction” and “Circadian rhythm-plant” pathways involved in defoliation traits were identified and validated by RT-qPCR analyses. Conclusions This study used RNA-Seq to discover genes associated with defoliation traits between two alfalfa varieties. Our transcriptome data dramatically enriches alfalfa functional genomic studies. In addition, these data provide theoretical guidance for field production practice and genetic breeding, as well as references for future study of defoliation traits in alfalfa
    corecore