345 research outputs found

    Lunar Daytime: Behavioral Experiments in a Space Analog Living and Working Environment

    Get PDF
    The Lunar Daytime concept addresses the challenge to behavioral scientists and architectural researchers in conducting research in space habitats or habitat analogs to produce scientifically valid results. Historically, researchers were limited to largely qualitative surveys. Instead, the Lunar Daytime (LDT) team will demonstrate the efficacy of a modifiable environmental habitat analog laboratory capable of producing empirical, measurable, and quantitative data sets. To measure effects on crew performance and crew behavioral responses as a dependent variable, researchers must be able to make and control changes in the physical living and working environment as an independent variable. Lunar Daytime refers to modeling an early human-tended lunar base. Because this surface mission depends on solar energy for power, which is available only during the lunar day, the time limit to the simulation is 14 days, but may run shorter. This LDT context provides the mission scenario to conduct these comparatively short-duration habitat analog studies. A benefit of two-week long simulations is that it becomes possible to conduct multiple test runs within the same time and budget that a much longer (i.e. Mars mission) scenario would require. The LDT team has conducted extensive studies of space vehicle and habitat design, done research in various analog habitats (e.g., MDRS, HERA, HI-SEAS, Concordia), and reviewed all existing space habitat analog facilities. Unfortunately, none of the current facilities allow for the degree of modification necessary to experimentally address the critical issues surrounding creation of the optimally built habitat. Major Objectives: 1) Create a space habitat analog research facility, specifically designed to accommodate desired modifications in the physical and perceptual living and working environment, and 2) Demonstrate the ability of such an environmental behavioral laboratory to simulate, investigate, and address critical factors that play important roles in human health and well-being in Isolated and confined environments (ICEs)

    Accounting for variability when resurrecting dormant propagules substantiates their use in eco-evolutionary studies

    Get PDF
    There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often-used measurements like seed germination success are imperfect indicators of propagule viability. Using a Bayesian statistical framework, we evaluated sources of variability and tested for zero-inflation and overdispersion in data from 13 germination trials of soil-stored seeds of Schoenoplectus americanus, an ecosystem engineer in coastal salt marshes in the Chesapeake Bay. We hypothesized that these two model structures align with an ecological understanding of dormancy and revival: zero-inflation could arise due to failed germinations resulting from inviability or failed attempts to break dormancy, and overdispersion could arise by failing to measure important seed traits. A model that accounted for overdispersion, but not zero-inflation, was the best fit to our data. Tetrazolium viability tests corroborated this result: most seeds that failed to germinate did so because they were inviable, not because experimental methods failed to break their dormancy. Seed viability declined exponentially with seed age and was mediated by seed provenance and experimental conditions. Our results provide a framework for accounting for and explaining variability when estimating propagule viability from soil-stored natural archives which is a key aspect of using dormant propagules in eco-evolutionary studies

    Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series

    Get PDF
    Background: Respiratory syncytial virus (RSV) infection is an important cause of pneumonia mortality in young children. However, clinical data for fatal RSV infection are scarce. We aimed to identify clinical and socioeconomic characteristics of children aged younger than 5 years with RSV-related mortality using individual patient data. Methods: In this retrospective case series, we developed an online questionnaire to obtain individual patient data for clinical and socioeconomic characteristics of children aged younger than 5 years who died with community-acquired RSV infection between Jan 1, 1995, and Oct 31, 2015, through leading research groups for child pneumonia identified through a comprehensive literature search and existing research networks. For the literature search, we searched PubMed for articles published up to Feb 3, 2015, using the key terms “RSV”, “respiratory syncytial virus”, or “respiratory syncytial viral” combined with “mortality”, “fatality”, “death”, “died”, “deaths”, or “CFR” for articles published in English. We invited researchers and clinicians identified to participate between Nov 1, 2014, and Oct 31, 2015. We calculated descriptive statistics for all variables. Findings: We studied 358 children with RSV-related in-hospital death from 23 countries across the world, with data contributed from 31 research groups. 117 (33%) children were from low-income or lower middle-income countries, 77 (22%) were from upper middle-income countries, and 164 (46%) were from high-income countries. 190 (53%) were male. Data for comorbidities were missing for some children in low-income and middle-income countries. Available data showed that comorbidities were present in at least 33 (28%) children from low-income or lower middle-income countries, 36 (47%) from upper middle-income countries, and 114 (70%) from high-income countries. Median age for RSV-related deaths was 5·0 months (IQR 2·3–11·0) in low-income or lower middle-income countries, 4·0 months (2·0–10·0) in upper middle-income countries, and 7·0 months (3·6–16·8) in high-income countries. Interpretation: This study is the first large case series of children who died with community-acquired RSV infection. A substantial proportion of children with RSV-related death had comorbidities. Our results show that perinatal immunisation strategies for children aged younger than 6 months could have a substantial impact on RSV-related child mortality in low-income and middle-income countries

    The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook

    Full text link
    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include realistically complex galaxy models based on high-resolution imaging from space; spatially varying, physically-motivated blurring kernel; and combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.Comment: 30 pages, 13 figures, submitted for publication, with minor edits (v2) to address comments from the anonymous referee. Simulated data are available for download and participants can find more information at http://great3.projects.phys.ucl.ac.uk/leaderboard

    GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology

    Get PDF
    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically-varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially-varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ∌1\sim 1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the S\'{e}rsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to MNRAS; latest version has minor updates in presentation of 4 figures, no changes in content or conclusion

    Systematizing Confidence in Open Research and Evidence (SCORE)

    Get PDF
    Assessing the credibility of research claims is a central, continuous, and laborious part of the scientific process. Credibility assessment strategies range from expert judgment to aggregating existing evidence to systematic replication efforts. Such assessments can require substantial time and effort. Research progress could be accelerated if there were rapid, scalable, accurate credibility indicators to guide attention and resource allocation for further assessment. The SCORE program is creating and validating algorithms to provide confidence scores for research claims at scale. To investigate the viability of scalable tools, teams are creating: a database of claims from papers in the social and behavioral sciences; expert and machine generated estimates of credibility; and, evidence of reproducibility, robustness, and replicability to validate the estimates. Beyond the primary research objective, the data and artifacts generated from this program will be openly shared and provide an unprecedented opportunity to examine research credibility and evidence

    On the frequency, intensity and duration of starburst episodes triggered by galaxy interactions and mergers

    Full text link
    We investigate the intensity enhancement and the duration of starburst episodes, triggered by major galaxy interactions and mergers. To this aim, we analyze two large statistical datasets of numerical simulations. These have been obtained using two independent and different numerical techniques to model baryonic and dark matter evolution, that are extensively compared for the first time. One is a Tree-SPH code, the other one is a grid-based N-body sticky-particles code. We show that, at low redshift, galaxy interactions and mergers in general trigger only moderate star formation enhancements. Strong starbursts where the star formation rate is increased by a factor larger than 5 are rare and found only in about 15% of major galaxy interactions and mergers. Merger-driven starbursts are also rather short-lived, with a typical duration of the activity of a few 10^8 yr. These conclusions are found to be robust, independent from the numerical techniques and star formation models. At higher redshifts where galaxies contain more gas, gas inflow-induced starbursts are neither stronger neither longer than their local counterparts. In turn, the formation of massive gas clumps, results of local Jeans instability that can occur spontaneously in gas-rich disks or be indirectly favored by galaxy interactions, could play a more important role in determining the duration and intensity of star formation episodes.Comment: 22 pages, 28 figures, A&A accepted. High resolution version available at http://aramis.obspm.fr/~paola/SFR_frequency

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured
    • 

    corecore