11 research outputs found

    Melon diversity on the Silk Road by molecular phylogenetic analysis in Kazakhstan melons

    Get PDF
    To uncover population structure, phylogenetic relationship, and diversity in melons along the famous Silk Road, a seed size measurement and a phylogenetic analysis using five chloroplast genome markers, 17 RAPD markers and 11 SSR markers were conducted for 87 Kazakh melon accessions with reference accessions. Kazakh melon accessions had large seed with exception of two accessions of weedy melon, Group Agrestis, and consisted of three cytoplasm types, of which Ib-1/-2 and Ib-3 were dominant in Kazakhstan and nearby areas such as northwestern China, Central Asia and Russia. Molecular phylogeny showed that two unique genetic groups, STIa-2 with Ib-1/-2 cytoplasm and STIa-1 with Ib-3 cytoplasm, and one admixed group, STIAD combined with STIa and STIb, were prevalent across all Kazakh melon groups. STIAD melons that phylogenetically overlapped with STIa-1 and STIa-2 melons were frequent in the eastern Silk Road region, including Kazakhstan. Evidently, a small population contributed to melon development and variation in the eastern Silk Road. Conscious preservation of fruit traits specific to Kazakh melon groups is thought to play a role in the conservation of Kazakh melon genetic variation during melon production, where hybrid progenies were generated through open pollination

    Elucidation of genetic variation and population structure of melon genetic resources in the NARO Genebank, and construction of the World Melon Core Collection

    Get PDF
    Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their genetic variation and selecting a representative subset (“core collection”) are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit morphology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon

    Analysis of genetic diversity and population structure in Cambodian melon landraces using molecular markers

    Get PDF
    Genetic diversity of Cambodian melons was evaluated by the analysis of 12 random amplified polymorphic DNA (RAPD) and 7 simple sequence repeat (SSR) markers using 62 accessions of melon landraces and compared with 231 accessions from other areas for genetic characterization of Cambodian melons. Among 62 accessions, 56 accessions were morphologically classified as small-seed type with seed lengths shorter than 9 mm, as in the horticultural groups Conomon and Makuwa. Gene diversity of Cambodian melons was 0.228, which was equivalent to those of the groups Conomon and Makuwa and smaller than those of Vietnamese and Central Asian landraces. A phylogenetic tree constructed from a genetic distance matrix classified 293 accessions into three major clusters. Small-seed type accessions from East and Southeast Asia formed clusters I and II, which were distantly related with cluster III consisting of large-seed type melon from other areas. All Cambodian melons belonged to cluster I (except three accessions) along with those from Thailand, Myanmar, Yunnan (China), and Vietnam (“Dua thom” in the northwest), thus indicating genetic similarity in these areas. In addition, the Cambodian melons were not differentiated among geographical populations. Conomon and Makuwa were classified into cluster II, together with melon groups from the plains of Vietnam. The presence of two groups of melons in Southeast Asia was also indicated by population structure and principal coordinate analysis. These results indicated a close genetic relationship between Cambodia and the neighboring countries, thus suggesting that Cambodian melons are not directly related to the establishment of Conomon and Makuwa

    GENERAL SESSION

    No full text
    corecore