22 research outputs found

    Distributed Deep Learning Optimization of Heat Equation Inverse Problem Solvers

    Get PDF
    The inversion problem of partial differential equation plays a crucial role in cyber-physical systems applications. This paper presents a novel deep learning optimization approach to constructing a solver of heat equation inversion. To improve the computational efficiency in large-scale industrial applications, data and model parallelisms are incorporated on a platform of multiple GPUs. The advanced Ring-AllReduce architecture is harnessed to achieve an acceleration ratio of 3.46. Then a new multi-GPUs distributed optimization method GradReduce is proposed based on Ring-AllReduce architecture. This method optimizes the original data communication mechanism based on mechanical time and frequency by introducing the gradient transmission scheme solved by linear programming. The experimental results show that the proposed method can achieve an acceleration ratio of 3.84 on a heterogeneous system platform with two CPUs and four GPUs

    PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification

    No full text
    Point cloud classification plays a significant role in Light Detection and Ranging (LiDAR) applications. However, most available multi-scale feature learning networks for large-scale 3D LiDAR point cloud classification tasks are time-consuming. In this paper, an efficient deep neural architecture denoted as Point Expanded Multi-scale Convolutional Network (PEMCNet) is developed to accurately classify the 3D LiDAR point cloud. Different from traditional networks for point cloud processing, PEMCNet includes successive Point Expanded Grouping (PEG) units and Absolute and Relative Spatial Embedding (ARSE) units for representative point feature learning. The PEG unit enables us to progressively increase the receptive field for each observed point and aggregate the feature of a point cloud at different scales but without increasing computation. The ARSE unit following the PEG unit furthermore realizes representative encoding of points relationship, which effectively preserves the geometric details between points. We evaluate our method on both public datasets (the Urban Semantic 3D (US3D) dataset and Semantic3D benchmark dataset) and our new collected Unmanned Aerial Vehicle (UAV) based LiDAR point cloud data of the campus of Guangdong University of Technology. In comparison with four available state-of-the-art methods, our methods ranked first place regarding both efficiency and accuracy. It was observed on the public datasets that with a 2% increase in classification accuracy, over 26% improvement of efficiency was achieved at the same time compared to the second efficient method. Its potential value is also tested on the newly collected point cloud data with over 91% of classification accuracy and 154 ms of processing time

    Hyperspectral Image Classification Based on the Gabor Feature with Correlation Information

    No full text
    Gabor filter is widely used to extract spatial texture features of hyperspectral images (HSI) for HSI classification; however, a single Gabor filter cannot obtain the complete image features. In the paper, we propose an HSI classification method that combines the Gabor filter (GF) and domain-transformation standard convolution (DTNC) filter. First, we use the Gabor filter to extract spatial texture features from the first two principal components of the dimensionality-reduction HSI with PCA. Second, we use the DTNC filter to extract spatial correlation features from HSI in all bands. Finally, the Large Margin Distribution Machine (LDM) uses the linear fusion of the two kinds of spatial features to classify HSI. The experimental results show that the classification accuracy of Indian Pines, Pavia University, and Kennedy Space Center data sets is 96.64, 98.23, and 98.95% with only 4, 3, and 6% training samples, respectively; and these accuracies are 2–20% higher than the other tested methods. Compared with the hyperspectral information based on SVM, EPF, IFRF, PCA-EPFs, LDM-FL, and GFDN method, the proposed method, GFDTNCLDM, significantly improves the accuracy of HSI classification

    Hyperspectral Image Classification Based on Fusion of Guided Filter and Domain Transform Interpolated Convolution Filter

    No full text
    In recent years, the spatial texture features obtained by filtering have become a hot research topic to improve hyperspectral image classification, but spatial correlation information is often lost in spatial texture information extraction. To solve this problem, a spectral-spatial classification method based on guided filtering and by the algorithm Large Margin Distribution Machine (LDM) is proposed. More specifically, the spatial texture features can be extracted by a Guided filter (GDF) from hyperspectral images whose dimensionality is reduced by a Principal Component Analysis (PCA). Spatial correlation features of the hyperspectral image are then obtained using a Domain Transform Interpolated Convolution Filter. The last step is to fuse spatial texture features and correlation features for classification by LDM. The experimental results using the actual hyperspectral image indicate that the proposed GDFDTICF-LDM method is superior to other classification methods, such as the original Support Vector Machine (SVM) with raw spectral features, dimensionality reduction features and spatial-spectral information, methods of edge-preserving filter and recursive filter, and LDM-based methods

    Motion Blur Removal for Uav-Based Wind Turbine Blade Images Using Synthetic Datasets

    No full text
    Unmanned air vehicle (UAV) based imaging has been an attractive technology to be used for wind turbine blades (WTBs) monitoring. In such applications, image motion blur is a challenging problem which means that motion deblurring is of great significance in the monitoring of running WTBs. However, an embarrassing fact for these applications is the lack of sufficient WTB images, which should include better pairs of sharp images and blurred images captured under the same conditions for network model training. To overcome the challenge of image pair acquisition, a training sample synthesis method is proposed. Sharp images of static WTBs were first captured, and then video sequences were prepared by running WTBs at different speeds. The blurred images were identified from the video sequences and matched to the sharp images using image difference. To expand the sample dataset, rotational motion blurs were simulated on different WTBs. Synthetic image pairs were then produced by fusing sharp images and images of simulated blurs. Finally, a total of 4000 image pairs were obtained. To conduct motion deblurring, a hybrid deblurring network integrated with DeblurGAN and DeblurGANv2 was deployed. The results show that the integration of DeblurGANv2 and Inception-ResNet-v2 provides better deblurred images, in terms of both metrics of signal-to-noise ratio (80.138) and structural similarity (0.950) than those obtained from the comparable networks of DeblurGAN and MobileNet-DeblurGANv2

    Spectral-Spatial Classification of Hyperspectral Imagery Based on Stacked Sparse Autoencoder and Random Forest

    No full text
    It is of great interest in exploiting spectral-spatial information for hyperspectral image (HSI) classification at different spatial resolutions. This paper proposes a new spectral-spatial deep learning-based classification paradigm. First, pixel-based scale transformation and class separability criteria are employed to measure appropriate spatial resolution HSI, and then we integrate the spectral and spatial information (i.e., both implicit and explicit features) together to construct a joint spectral-spatial feature set. Second, as a deep learning architecture, stacked sparse autoencoder provides strong learning performance and is expected to exploit even more abstract and high-level feature representations from both spectral and spatial domains. Specifically, random forest (RF) classifier is first introduced into stacked sparse autoencoder for HSI classification, based on the fact that it provides better tradeoff among generalization performance, prediction accuracy and operation speed compared to other traditional procedures. Experiments on two real HSIs demonstrate that the proposed framework generates competitive performance

    Motion Blur Removal for Uav-Based Wind Turbine Blade Images Using Synthetic Datasets

    No full text
    Unmanned air vehicle (UAV) based imaging has been an attractive technology to be used for wind turbine blades (WTBs) monitoring. In such applications, image motion blur is a challenging problem which means that motion deblurring is of great significance in the monitoring of running WTBs. However, an embarrassing fact for these applications is the lack of sufficient WTB images, which should include better pairs of sharp images and blurred images captured under the same conditions for network model training. To overcome the challenge of image pair acquisition, a training sample synthesis method is proposed. Sharp images of static WTBs were first captured, and then video sequences were prepared by running WTBs at different speeds. The blurred images were identified from the video sequences and matched to the sharp images using image difference. To expand the sample dataset, rotational motion blurs were simulated on different WTBs. Synthetic image pairs were then produced by fusing sharp images and images of simulated blurs. Finally, a total of 4000 image pairs were obtained. To conduct motion deblurring, a hybrid deblurring network integrated with DeblurGAN and DeblurGANv2 was deployed. The results show that the integration of DeblurGANv2 and Inception-ResNet-v2 provides better deblurred images, in terms of both metrics of signal-to-noise ratio (80.138) and structural similarity (0.950) than those obtained from the comparable networks of DeblurGAN and MobileNet-DeblurGANv2

    Hyperspectral and Full-Waveform LiDAR Improve Mapping of Tropical Dry Forest’s Successional Stages

    No full text
    Accurate estimation of the degree of regeneration in tropical dry forest (TDF) is critical for conservation policymaking and evaluation. Hyperspectral remote sensing and light detection and ranging (LiDAR) have been used to characterize the deterministic successional stages in a TDF. These successional stages, classified as early, intermediate, and late, are considered a proxy for mapping the age since the abandonment of a given forest area. Expanding on the need for more accurate successional forest mapping, our study considers the age attributes of a TDF study area as a continuous expression of relative attribute scores/levels that vary along the process of ecological succession. Specifically, two remote-sensing data sets: HyMap (hyperspectral) and LVIS (waveform LiDAR), were acquired at the Santa Rosa National Park Environmental Monitoring Super Site (SRNP-EMSS) in Costa Rica, were used to generate age-attribute metrics. These metrics were then used as entry-level variables on a randomized nonlinear archetypal analysis (RNAA) model to select the most informative metrics from both data sets. Next, a relative attribute learning (RAL) algorithm was adapted for both independent and fused metrics to comparatively learn the relative attribute levels of the forest ages of the study area. In this study, four HyMap indices and five LVIS metrics were found to have the potential to map the forest ages of the study area, and compared with these results, a significant improvement was found through the fusion of the metrics on the accuracy of the generated forest age maps. By linking the age group mapping and the relative attribute mapping results, a dynamic gradient of the age-attribute transition patterns emerged

    Sugarcane Biomass Prediction with Multi-Mode Remote Sensing Data Using Deep Archetypal Analysis and Integrated Learning

    No full text
    The use of multi-mode remote sensing data for biomass prediction is of potential value to aid planting management and yield maximization. In this study, an advanced biomass estimation approach for sugarcane fields is proposed based on multi-source remote sensing data. Since feature interpretability in agricultural data mining is significant, a feature extraction method of deep archetypal analysis (DAA) that has good model interpretability is introduced and aided by principal component analysis (PCA) for feature mining from the multi-mode multispectral and light detection and ranging (LiDAR) remote sensing data pertaining to sugarcane. In addition, an integrated regression model integrating random forest regression, support vector regression, K-nearest neighbor regression and deep network regression is developed after feature extraction by DAA to precisely predict biomass of sugarcane. In this study, the biomass prediction performance achieved using the proposed integrated learning approach is found to be predominantly better than that achieved by using conventional linear methods in all the time periods of plant growth. Of more significance, according to model interpretability of DAA, only a small set of informative features maintaining their physical meanings (four informative spectral indices and four key LiDAR metrics) can be extracted which eliminates the redundancy of multi-mode data and plays a vital role in accurate biomass prediction. Therefore, the findings in this study provide hands-on experience to planters with indications of the key or informative spectral or LiDAR metrics relevant to the biomass to adjust the corresponding planting management design
    corecore