163 research outputs found
Future therapeutic targets in rheumatoid arthritis?
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches
Olprinone Attenuates the Acute Inflammatory Response and Apoptosis after Spinal Cord Trauma in Mice
BACKGROUND: Olprinone hydrochloride is a newly developed compound that selectively inhibits PDE type III and is characterized by several properties, including positive inotropic effects, peripheral vasodilatory effects, and a bronchodilator effect. In clinical settings, olprinone is commonly used to treat congestive cardiac failure, due to its inotropic and vasodilating effects. The mechanism of these cardiac effects is attributed to increased cellular concentrations of cAMP. The aim of the present study was to evaluate the pharmacological action of olprinone on the secondary damage in experimental spinal cord injury (SCI) in mice. METHODOLOGY/PRINCIPAL FINDINGS: Traumatic SCI is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should be preventable, no effective treatment options currently exist for patients with SCI. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, apoptosis, and locomotor disturbance. Olprinone treatment (0.2 mg/kg, i.p.) 1 and 6 h after the SCI significantly reduced: (1) the degree of spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation, (4) pro-inflammatory cytokines, (5) NF-kappaB expression, (6) p-ERK1/2 and p38 expression and (7) apoptosis (TUNEL staining, FAS ligand, Bax and Bcl-2 expression). Moreover, olprinone significantly ameliorated the recovery of hind-limb function (evaluated by motor recovery score). CONCLUSIONS/SIGNIFICANCE: Taken together, our results clearly demonstrate that olprinone treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma
Small tumor necrosis factor receptor biologics inhibit the tumor necrosis factor-p38 signalling axis and inflammation
Anti-TNF therapy has improved the treatment of inflammatory disease but can predispose to infection and malignancy. Here the authors show an anti-TNF biologic peptide that functionally and selectively targets the TNF-p38 pathway in multiple models of inflammation
Safety and effectiveness of switching from infliximab to etanercept in patients with rheumatoid arthritis: results from a large Japanese postmarketing surveillance study
Finding an effective treatment strategy for rheumatoid arthritis (RA) patients who have not benefited from previous tumor necrosis factor–α antagonist treatment is important for minimizing RA disease activity and improving patient outcomes. The aim of this study was to compare the safety and effectiveness of etanercept in patients with and without infliximab (IFX) treatment experience. Patients (n = 7,099) from a large postmarketing observational study of etanercept use in Japan were divided into 2 cohorts based on previous IFX use (pre-IFX and non-IFX). Baseline characteristics were assessed in each cohort. Adverse events (AEs) and European League Against Rheumatism (EULAR) responses were monitored every 4 weeks for 24 weeks. At baseline, pre-IFX patients were younger and had fewer comorbidities and a shorter RA duration than non-IFX patients. During the study, pre-IFX patients received concomitant methotrexate more often than non-IFX patients. The incidence of AEs and serious AEs were significantly lower in pre-IFX patients, as was the percentage of patients who discontinued treatment. Both cohorts had significant improvement (P < 0.001) in EULAR responses at the end of the treatment period. This study demonstrated that etanercept was effective and well tolerated in active RA patients with and without prior IFX treatment
Homeodomain Interacting Protein Kinase 2 Activation Compromises Endothelial Cell Response to Laminar Flow: Protective Role of p21waf1,cip1,sdi1
BACKGROUND: In the cardiovascular system, laminar shear stress (SS) is one of the most important source of endothelial protecting signals. Physical and chemical agents, however, including ionising radiations and anticancer drugs, may injure endothelial cells determining an increase in oxidative stress and genotoxic damage. Whether the SS protective function remains intact in the presence of strong oxidants or DNA damage is currently unclear. METHODS AND RESULTS: To investigate this aspect a series of experiments were performed in which HUVEC were exposed to sub-lethal doses of the radio-mimetic compound Bleomycin (Bleo; 10 microg/ml) which generated free radicals (ROS) without significantly compromising cell survival. Remarkably, the application of a SS of 12 dyne/cm(2) did not protect endothelial cells but markedly accelerated apoptosis compared to controls kept in static culture and in the presence of Bleo. Experiments with the inducible nitric oxide synthase (iNOS) inhibitor GW274150 significantly reduced the SS-dependent apoptosis indicating that the production of NO was relevant for this effect. At molecular level, the ataxia-telangectasia-mutated (ATM) kinase, the homeodomain-interacting protein kinase-2 (HIPK2) and p53 were found activated along a pro-apoptotic signalling pathway while p21(waf1,cip1,sdi1) was prevented from its protective action. RNA interference experiments revealed that HIPK2 and p53 were both important for this process, however, only the forced expression p21(waf1,cip1,sdi1) fully restored the SS-dependent pro-survival function. CONCLUSIONS: This study provides the first evidence that, in the presence of genotoxic damage, laminar flow contributes to endothelial toxicity and death and identifies molecular targets potentially relevant in endothelial dysfunction and cardiovascular disease pathogenesis
PDE 7 Inhibitors: New Potential Drugs for the Therapy of Spinal Cord Injury
BACKGROUND: Primary traumatic mechanical injury to the spinal cord (SCI) causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs), which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA) methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score), and TNF-α, IL-6, COX-2 and iNOS expression. CONCLUSIONS/SIGNIFICANCE: All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI
Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD
Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m2 at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression
Targeting a Newly Established Spontaneous Feline Fibrosarcoma Cell Line by Gene Transfer
Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas
Neural Mechanisms of Human Perceptual Learning: Electrophysiological Evidence for a Two-Stage Process
Artículo de publicación ISIBackground: Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed.
Methodology/Principal Findings: We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.This research was supported by CONICYT doctoral grant to C.M.H. and by an ECOS-Sud/CONICYT grant C08S02 and FONDECYT 1090612 grant to D.C.
and F.A
Inflammatory bowel disease: past, present, and future
Crohn’s disease and ulcerative colitis, collectively known as the inflammatory bowel diseases (IBD), are largely diseases of the twentieth century, and are associated with the rise of modern, Westernized industrial society. Although the causes of these diseases remain incompletely understood, the prevailing model is that the intestinal flora drives an unmitigated intestinal immune response and inflammation in the genetically susceptible host. A review of the past and present of these diseases shows that detailed description preceded more fundamental elucidation of the disease processes. Working out the details of disease pathogenesis, in turn, has yielded dividends in more focused and effective therapy for IBD. This article highlights the key descriptions of the past, and the pivotal findings of current studies in disease pathogenesis and its connection to medical therapy. Future directions in the IBD will likely explicate the inhomogeneous causes of these diseases, with implications for individualized therapy
- …