2,635 research outputs found
Role of heat and mechanical treatments in the fabrication of superconducting Ba0.6K0.4Fe2As2 ex-situ Powder-In-Tube tapes
Among the recently discovered Fe-based superconducting compounds, the
(K,Ba)Fe2As2 phase is attracting large interest within the scientific community
interested in conductor developments. In fact, after some years of development,
critical current densities Jc of about 105 A/cm2 at fields up to more than 10 T
have been obtained in powder in tube (PIT) processed wires and tapes. Here we
explore the crucial points in the wire/tape fabrication by means of the ex-situ
PIT method. We focus on scaling up processes which are crucial for the
industrial fabrication. We analyzed the effects on the microstructure of the
different heat and mechanical treatments. By an extensive microstructural
analysis correlated with the transport properties we addressed the issues
concerning the phase purity, the internal porosity and crack formation in the
superconducting core region. Our best conductors with a filling factor of about
30 heat treated at 800 C exhibited Tc = 38 K the highest value measured in such
kind of superconducting tape. The microstructure analysis shows clean and well
connected grain boundaries but rather poor density: The measured Jc of about 3
x 10^4 A/cm2 in self-field is suppressed by less than a factor 7 at 7 T. Such
not yet optimized Jc values can be accounted for by the reduced density while
the moderate in-field suppression and a rather high n-factor confirm the high
homogeneity and uniformity of these tapes
How glassy are neural networks?
In this paper we continue our investigation on the high storage regime of a
neural network with Gaussian patterns. Through an exact mapping between its
partition function and one of a bipartite spin glass (whose parties consist of
Ising and Gaussian spins respectively), we give a complete control of the whole
annealed region. The strategy explored is based on an interpolation between the
bipartite system and two independent spin glasses built respectively by
dichotomic and Gaussian spins: Critical line, behavior of the principal
thermodynamic observables and their fluctuations as well as overlap
fluctuations are obtained and discussed. Then, we move further, extending such
an equivalence beyond the critical line, to explore the broken ergodicity phase
under the assumption of replica symmetry and we show that the quenched free
energy of this (analogical) Hopfield model can be described as a linear
combination of the two quenched spin-glass free energies even in the replica
symmetric framework
Conditioned Unitary Transformation on biphotons
A conditioned unitary transformation ( polarization rotation) is
performed at single-photon level. The transformation is realized by rotating
polarization for one of the photons of a polarization-entangled biphoton state
(signal photon) by means of a Pockel's cell triggered by the detection of the
other (idler) photon after polarization selection. As a result, polarization
degree for the signal beam changes from zero to the value given by the idler
detector quantum efficiency. This result is relevant to practical realization
of various quantum information schemes and can be used for developing a new
method of absolute quantum efficiency calibration
Constrained MaxLik reconstruction of multimode photon distributions
We address the reconstruction of the full photon distribution of multimode
fields generated by seeded parametric down-conversion (PDC). Our scheme is
based on on/off avalanche photodetection assisted by maximum-likelihood
(MaxLik) estimation and does not involve photon counting. We present a novel
constrained MaxLik method that incorporates the request of finite energy to
improve the rate of convergence and, in turn, the overall accuracy of the
reconstruction
Measuring the photon distribution by ON/OFF photodectors
Reconstruction of photon statistics of optical states provide fundamental
information on the nature of any optical field and find various relevant
applications. Nevertheless, no detector that can reliably discriminate the
number of incident photons is available. On the other hand the alternative of
reconstructing density matrix by quantum tomography leads to various technical
difficulties that are particular severe in the pulsed regime (where mode
matching between signal an local oscillator is very challenging). Even if
on/off detectors, as usual avalanche PhotoDiodes operating in Geiger mode, seem
useless as photocounters, recently it was shown how reconstruction of photon
statistics is possible by considering a variable quantum efficiency. Here we
present experimental reconstructions of photon number distributions of both
continuous-wave and pulsed light beams in a scheme based on on/off avalanche
photodetection assisted by maximum-likelihood estimation. Reconstructions of
the distribution for both semiclassical and quantum states of light (as single
photon, coherent, pseudothermal and multithermal states) are reported for
single-mode as well as for multimode beams. The stability and good accuracy
obtained in the reconstruction of these states clearly demonstrate the
interesting potentialities of this simple technique.Comment: 6 pages, 7 figures, to appear on Laser Physic
Image Coaddition with Temporally Varying Kernels
Large, multi-frequency imaging surveys, such as the Large Synaptic Survey
Telescope (LSST), need to do near-real time analysis of very large datasets.
This raises a host of statistical and computational problems where standard
methods do not work. In this paper, we study a proposed method for combining
stacks of images into a single summary image, sometimes referred to as a
template. This task is commonly referred to as image coaddition. In part, we
focus on a method proposed in previous work, which outlines a procedure for
combining stacks of images in an online fashion in the Fourier domain. We
evaluate this method by comparing it to two straightforward methods through the
use of various criteria and simulations. Note that the goal is not to propose
these comparison methods for use in their own right, but to ensure that
additional complexity also provides substantially improved performance
- …