20 research outputs found

    Study and Physical Mapping of the Species-Specific Tandem Repeat CS-237 Linked with 45S Ribosomal DNA Intergenic Spacer in Cannabis sativa L.

    No full text
    Hemp (Cannabis sativa L.) is a valuable crop and model plant for studying sex chromosomes. The scientific interest in the plant has led to its whole genome sequencing and the determination of its cytogenetic characteristics. A range of cytogenetic markers (subtelomeric repeat CS-1, 5S rDNA, and 45S rDNA) has been mapped onto hemp’s chromosomes by fluorescent in situ hybridization (FISH). In this study, another cytogenetic marker (the tandem repeat CS-237, with a 237 bp monomer) was found, studied, and localized on chromosomes by FISH. The signal distribution and karyotyping revealed that the CS-237 probe was localized in chromosome 6 with one hybridization site and in chromosome 8 with two hybridization sites, one of which colocalizes with the 45S rDNA probe (with which a nucleolus organizer region, NOR, was detected). A BLAST analysis of the genomic data and PCR experiments showed that the modified CS-237 monomers (delCS-237, 208 bp in size) were present in the intergenic spacers (IGSs) of hemp 45S rDNA monomers. Such a feature was firstly observed in Cannabaceae species. However, IGS-linked DNA repeats were found in several plant species of other families (Fabaceae, Solanaceae, and Asteraceae). This phenomenon is discussed in this article. The example of CS-237 may be useful for further studying the phenomenon as well as for the physical mapping of hemp chromosomes

    Superconducting Helical Solenoid Systems for Muon Cooling Experiment at Fermilab

    No full text
    Abstract-Novel configurations of superconducting magnet system for Muon Beam Cooling Experiment is under design at Fermilab. The magnet system has to generate longitudinal and transverse dipole and quadrupole helical magnetic fields providing a muon beam motion along helical orbit. It was found that such complicated field configuration can be formed by a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. Closed beam orbit configurations were also proposed and investigated. This paper describes the magnetic and mechanical designs and parameters of such magnetic system based on a NbTi Rutherford type cable. The helical solenoid fabrication, assembly and quench protection issues are presented

    MAGNETS FOR THE MANX 6-D MUON COOLING DEMONSTRATION EXPERIMENT

    No full text
    Abstract MANX is a 6-dimensional muon ionization-cooling experiment that has been proposed to Fermilab to demonstrate the use of a Helical Cooling Channel (HCC) for future muon colliders and neutrino factories. The HCC for MANX has solenoidal, helical dipole, and helical quadrupole magnetic components which diminish as the beam loses energy as it slow down in a liquid helium absorber inside the magnets. Additional magnets that provide emittance matching between the HCC and upstream and downstream spectrometers are also described as are the results of G4Beamline simulations of the beam cooling behavior of the complete magnet and absorber system
    corecore