2 research outputs found

    Generation of Internal Gravity Waves in the Thermosphere during Operation of the SURA Facility under Parametric Resonance Conditions

    No full text
    The problem of excitation of internal gravity waves (IGWs) in the upper atmosphere by an external source of a limited duration of operation is investigated. An isothermal atmosphere was chosen as the propagation environment of IGWs in the presence of a uniform wind that changes over time according to the harmonic law. For the vertical component of the displacement of an environment, the Mathieu equation with zero initial conditions was solved with the right part simulating the effect of a powerful heating facility on the ionosphere. In the case of a small amplitude of the variable component of the wind, the time dependence of the vertical displacement under parametric resonance conditions using the perturbation method is obtained. The obtained dependence of the solution of the differential equation on the parameters allows us to perform a numerical analysis of the problem in the case of variable wind of arbitrary amplitude. For practical estimations of the obtained values, data on the operating modes of the SURA heating facility (56.15° N, 46.11° E) with periodic (15–30 min) switching on during of 2–3 h for ionosphere impact were used

    Study of a Gas Disturbance Mode Content Based on the Measurement of Atmospheric Parameters at the Heights of the Mesosphere and Lower Thermosphere

    No full text
    The main result of this work is the estimation of the entropy mode accompanying a wave disturbance, observed at the atmosphere heights range of 90–120 km. The study is the direct continuation and development of recent results on diagnosis of the acoustic wave with the separation on direction of propagation. The estimation of the entropy mode contribution relies upon the measurements of the three dynamic variables (the temperature, density, and vertical velocity perturbations) of the neutral atmosphere measured by the method of the resonant scattering of radio waves on the artificial periodic irregularities of the ionospheric plasma. The measurement of the atmosphere dynamic parameters was carried out on the SURA heating facility. The mathematical foundation of the mode separation algorithm is based on the dynamic projection operators technique. The operators are constructed via the eigenvectors of the coordinate evolution operator of the transformed system of balance equations of the hydro-thermodynamics
    corecore