10 research outputs found

    Mixed Heisenberg Chains. II. Thermodynamics

    Full text link
    We consider thermodynamic properties, e.g. specific heat, magnetic susceptibility, of alternating Heisenberg spin chains. Due to a hidden Ising symmetry these chains can be decomposed into a set of finite chain fragments. The problem of finding the thermodynamic quantities is effectively separated into two parts. First we deal with finite objects, secondly we can incorporate the fragments into a statistical ensemble. As functions of the coupling constants, the models exhibit special features in the thermodynamic quantities, e.g. the specific heat displays double peaks at low enough temperatures. These features stem from first order quantum phase transitions at zero temperature, which have been investigated in the first part of this work.Comment: 12 pages, RevTeX, 12 embedded eps figures, cf. cond-mat/9703206, minor modification

    Crystal Field, Magnetic Anisotropy and Excitations in Rare-Earth Hexaborides

    Full text link
    We clarify the role of crystalline electric field (CEF) induced magnetic anisotropy in the ground state and spin-wave spectrum of cubic rare-earth materials with dominating isotropic magnetic exchange interactions. In particular we study the hexaboride NdB_6 which is shown to exhibit strong spin-quadrupolar coupling. The CEF scheme is analyzed and a non-collinear magnetization response is found. The spin orientation in the antiferromagnetically ordered ground-state is identified. Moreover, the spin excitations are evaluated and in agreement with inelastic neutron scattering a suppression of one of the two magnetic modes in the strong-coupling regime is predicted.Comment: 4 pages, 1 eps-figur

    Concerning Order and Disorder in the Ensemble of Cu-O Chain Fragments in Oxygen Deficient Planes of Y-Ba-Cu-O

    Full text link
    In connection with numerous X-ray and neutron investigations of some high temperature superconductors (YBa2_2Cu3_3O6+x_{6+x} and related compounds) a non-trivial part of the structure factor, coming from partly disordered Cu-O-…\dots-O-Cu chain fragments, situated within basal planes, CuOx_x, can be a subject of theoretical interest. Closely connected to such a diffusive part of the structure factor are the correlation lengths, which are also available in neutron and X-ray diffraction studies and depend on a degree of oxygen disorder in a basal plane. The quantitative measure of such a disorder can be associated with temperature of a sample anneal, TqT_q, at which oxygen in a basal plane remains frozen-in high temperature equilibrium after a fast quench of a sample to room or lower temperature. The structure factor evolution with xx is vizualized in figures after the numerical calculations. The theoretical approach employed in the paper has been developed for the orthorhombic state of YBCO.Comment: Revtex, 27 pages, 14 PostScript figures upon request, ITP/GU/94/0

    Model for the low-temperature magnetic phases observed in doped YBa_2Cu_3O_{6+x}

    Full text link
    A classical statistical model for the antiferromagnetic (AFM) ordering of the Cu-spins in the CuO_2 planes of reduced YBa_2Cu_3O_{6+x} type materials is presented. The magnetic phases considered are the experimentally observed high-temperature AFI phase with ordering vector Q_I=(1/2,1/2,0), and the low-temperature phases: AFII with Q_II=(1/2,1/2,1/2) and intermediate TA (Turn Angle) phases TAI, TAII and TAIII with components of both ordering vectors. It is shown that the AFII and TA phases result from an effective ferromagnetic (FM) type coupling mediated by free spins in the CuO_x basal plane. Good agreement with experimental data is obtained for realistic model parameters.Comment: 11 pages, 2 Postscript figures, Submitted to Phys.Rev.Let

    Quadrupolar and magnetic ordering in CeB6

    Full text link
    The quadrupolar ordering in CeB_6 is explained in terms of the electrostatic interaction of quadrupolar moments arranged into a simple cubic lattice. The representation of magnetic and quadrupolar moments by means of quasispins of two kinds is employed. A linear increase of the quadrupolar transition temperature T_Q(H) with applied magnetic field and its further re-entrance are described using a generalized spherical model which is well adjusted to a particular problem of the quadrupolar ordering in CeB_6. The theory naturally explains the growing specific heat jump at T_Q(H) with increasing magnetic field. The role of the quadrupolar ordering in the formation of the magnetic ordering, as well as the possible critical experiments and applications to other rare-earth compounds, are discussed.Comment: 40 pages, 9 Postscript figures, to appear in Phys.Rev.

    Mixed Heisenberg Chains. I. The Ground State Problem

    Full text link
    We consider a mechanism for competing interactions in alternating Heisenberg spin chains due to the formation of local spin-singlet pairs. The competition of spin-1 and spin-0 states reveals hidden Ising symmetry of such alternating chains.Comment: 7 pages, RevTeX, 4 embedded eps figures, final versio
    corecore