1,435 research outputs found
Hyperbolic outer billiards : a first example
We present the first example of a hyperbolic outer billiard. More precisely
we construct a one parameter family of examples which in some sense correspond
to the Bunimovich billiards.Comment: 11 pages, 8 figures, to appear in Nonlinearit
Essai de maîtrise de l'embroussaillement par des bovins et des équins (Suberaie des Albères, Pyrénées-Orientales)
International audienc
A characterization of quasi-rational polygons
The aim of this paper is to study quasi-rational polygons related to the
outer billiard. We compare different notions introduced, and make a synthesis
of those.Comment: 15 pages, 9 figure
Glycerol effects on optical, weight and geometrical properties of skin tissue
Complex study of glycerol e®ects on the skin tissue was performed. The change in optical, weight and geometrical parameters of the rat skin under the action of the glycerol solutions was studied ex vivo. Possible mechanisms of the skin optical clearing under the action of glycerol solutions of di®erent concentrations were discussed. The results can be helpful for re¯nement of models developed to evaluate the e®ective di®usion coe±cients of glycerol in tissues
Electron hole liquid in diamînds formed by nanosecond laser pulses
Electron-hole liquid (EHL) is a condensed state of non-equilibrium charge carriers, which can exist in some semiconductor materials at low temperature and high carrier density. Phenomenon of EHL is a promising thing for development of diamond based electronic devices, such as opto-electronical switches. Earlier in our paper [1] we showed that the presence of EHL strongly increases the photoconductivity of diamond sample
Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams
The thermally deformable mirror is a device aiming at correcting beam-wavefront distortions for applications where classical mechanical methods are precluded by noise considerations, as in advanced gravitational wave interferometric detectors. This moderately low-cost technology can be easily implemented and controlled thanks to the good reproducibility of the actuation. By using a flexible printed circuit board technology, we demonstrate experimentally that a device of 61 actuators in thermal contact with the back surface of a high-reflective mirror is able to correct the low-order aberrations of a laser beam at 1064 nm and could be used to optimize the mode matching into Fabry-Perot cavities
Python tooth-inspired fixation device for enhanced rotator cuff repair
Rotator cuff repair surgeries fail frequently, with 20 to 94% of the 600,000 repairs performed annually in the United States resulting in retearing of the rotator cuff. The most common cause of failure is sutures tearing through tendons at grasping points. To address this issue, we drew inspiration from the specialized teeth of snakes of the Pythonoidea superfamily, which grasp soft tissues without tearing. To apply this nondamaging gripping approach to the surgical repair of tendon, we developed and optimized a python tooth-inspired device as an adjunct to current rotator cuff suture repair and found that it nearly doubled repair strength. Integrated simulations, 3D printing, and ex vivo experiments revealed a relationship between tooth shape and grasping mechanics, enabling optimization of the clinically relevant device that substantially enhances rotator cuff repair by distributing stresses over the attachment footprint. This approach suggests an alternative to traditional suturing paradigms and may reduce the risk of tendon retearing after rotator cuff repair
Influence of carbon and nitrogen on electronic structure and hyperfine interactions in fcc iron-based alloys
Carbon and nitrogen austenites, modeled by Fe8N and Fe8C superstructures are
studied by full-potential LAPW method. Structure parameters, electronic and
magnetic properties as well as hyperfine interaction parameters are obtained.
Calculations prove that Fe-C austenite can be successfully modeled by ordered
Fe8C superstructure. The results show that chemical Fe-C bond in Fe8C has
higher covalent part than in Fe8N. Detailed analysis of electric field gradient
formation for both systems is performed. The calculation of electric field
gradient allow us to carry out a good interpretation of Moessbauer spectra for
Fe-C and Fe-N systems.Comment: 8 pages, 3 figures, IOP-style LaTeX, submitted to J. Phys. Condens.
Matte
Changes in optical properties of model cholangiocarcinoma after plasmon-resonant photothermal treatment
The heating degree of the inner layers of tumor tissue is an important parameter required to optimize plasmonic photothermal therapy (PPT). This study reports the optical properties of tissue layers of transplanted cholangiocarcinoma and covering tissues in rats without treatment (control group) and after PPT using gold nanorods (experimental group). PPT was carried out for 15 min, and the temperature on the skin surface reached 54.8 1.6 C. The following samples were cut out ex vivo and studied: skin, subcutaneous connective tissue, tumor capsule, top, center, and bottom part of the tumor. The samples’ absorption and reduced scattering coefficients were calculated using the inverse adding–doubling method at 350–2250 nm wavelength. Diffuse reflectance spectra of skin surface above tumors were measured in vivo in the control and experimental groups before and immediately after PPT in the wavelength range of 350–2150 nm. Our results indicate significant differences between the optical properties of the tissues before and after PPT. The differences are attributed to edema and hemorrhage in the surface layers, tissue dehydration of the deep tumor layers, and morphological changes during the heating
- …