60 research outputs found

    XPS guide: Charge neutralization and binding energy referencing for insulating samples

    Get PDF
    This guide deals with methods to control surface charging during XPS analysis of insulating samples and approaches to extracting useful binding energy information. The guide summarizes the causes of surface charging, how to recognize when it occurs, approaches to minimize charge buildup, and methods used to adjust or correct XPS photoelectron binding energies when charge control systems are used. There are multiple ways to control surface charge buildup during XPS measurements, and examples of systems on advanced XPS instruments are described. There is no single, simple, and foolproof way to extract binding energies on insulating material, but advantages and limitations of several approaches are described. Because of the variety of approaches and limitations of each, it is critical for researchers to accurately describe the procedures that have been applied in research reports and publications

    Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance

    Get PDF
    Silicon-based contaminants are ubiquitous in natural graphite, and they are thus expected to be present in exfoliated graphene. Here, the authors show that such impurities play a non-negligible role in graphene-based devices, and use high-purity parent graphite to boost the performance of graphene sensors and supercapacitor microelectrodes

    Patterns of mitochondrial DNA instability in Brassica campestris cultured cells

    Full text link
    We previously showed that the mitochondrial DNA (mtDNA) of a Brassica campestris callus culture had undergone extensive rearrangements (i.e. large inversions and a duplication) relative to DNA of the control plant [54]. In this study we observed that after continued growth, the mtDNA of this culture continues to change, with rearranged forms amplifying and diminishing to varying proportions. Strikingly similar changes were detected in the mtDNA profiles of a variety of other long- and short-term callus and cell suspension lines. However, the proportions of parental (‘unrearranged’) and novel (‘rearranged’) forms varied in different cultured cell mtDNAs. To address the source of this heterogeneity, we compared the mtDNA organization of 28 individual plants from the parental seed stock. With the exception of one plant containing high levels of a novel plasmid-like mtDNA molecule, no significant variation was detected among individual plants and therefore source plant variation is unlikely to have contributed to the diversity of mitochondrial genomes observed in cultured cells. The source of this culture-induced heterogeneity was also investigated in 16 clones derived from single protoplasts. A mixed population of unrearranged and rearranged mtDNA molecules was apprent in each protoclone, suggesting that the observed heterogeneity in various cultures might reflect the genomic composition of each individual cell; however, the induction of an intercellular heterogeneity subsequent to the protoplast isolation was not tested and therefore cannot be ruled out. The results of this study support our earlier model that the rapid structural alteration of B. campestris mtDNA in vitro results from preferential amplification and reassortment of minor pre-existing forms of the genome rather than de novo rearrangement. Infrequent recombination between short dispersed repeated elements is proposed as the underlying mechanism for the formation of these minor mtDNA molecules.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43428/1/11103_2004_Article_BF00017914.pd

    A surface study of the native oxide upon a compositionally complex alloy

    No full text
    The native surface oxide upon a single phase low-density compositionally complex alloy (CCA), AlTiVCr, was studied herein—owing to its exceptionally high aqueous corrosion resistance. The nature of the native surface oxide/surface film was elaborated in the context of corrosion resistance, based on results from electrochemical testing, secondary ion mass spectroscopy, and x-ray photoelectron spectroscopy. Selective oxidation and unoxidized metal in the surface film were observed. Such features are comparatively unique and posited to be relevant to CCAs and high entropy alloys more generally.RKG and NB acknowledge support from the Office of Naval Research under the contract ONR: N00014-17-1-2807 with Dr. Airan Perez as program officer. NB and ST are supported by Woodside Energy

    Survival, oxidative stability, and surface characteristics of spray dried co-microcapsules containing omega-3 fatty acids and probiotic bacteria

    Get PDF
    The objective of the study was to determine optimum inlet and outlet air temperatures of spray process for producing co-microcapsules containing omega-3 rich tuna oil and probiotic bacteria L. casei. These co-microcapsules were produced using whey protein isolate and gum Arabic complex coacervates as shell materials. Improved bacterial viability and oxidative stability of omega-3 oil were used as two main criteria of this study. Three sets of inlet (130°C, 150°C, and 170°C) and outlet (55°C, 65°C, and 75°C) air temperatures were used in nine combinations to produce powdered co-microcapsule. The viability of L. casei, oxidative stability of omega-3 oil, surface oil, oil microencapsulation efficiency, moisture content, surface elemental composition and morphology of the powdered samples were measured. There is no statistical difference in oxidative stability at two lower inlet air temperatures (130°C and 150°C). However, there was a significant decrease in oxidative stability when higher inlet temperature (170°C) was used. The viability of L. casei decreased with the increase in the inlet and outlet air temperatures. There was no difference in the surface elemental compositions and surface morphology of powdered co-microcapsules produced under these nine inlet/outlet temperature combinations. Of the range of conditions tested the co-microcapsules produced at inlet-outlet temperature 130–65°C showed the highest bacterial viability and oxidative stability of omega-3 and having the moisture content of 4.93 ± 0.05% (w/w). This research shows that powdered co-microcapsules of probiotic bacteria and omega-3 fatty acids with high survival of the former and high stability against oxidation can be produced through spray drying

    Applying 'click' chemistry to polyurethanes: a straightforward approach for glycopolymer synthesis

    No full text
    We report a facile synthetic route to prepare polyurethanes with pendant sugar-moieties in the side-chain of the polymer through incorporation of diverse chain extenders capable of undergoing either copper catalyzed Huisgen 1,3-dipolar cycloaddition or thiol-ene click reactions

    Thiol surface functionalization via continuous phase plasma polymerization of allyl mercaptan, with subsequent maleimide-linked conjugation of collagen

    Full text link
    Thiol groups can undergo a large variety of chemical reactions and are used in solution phase to conjugate many bioactive molecules. Previous research on solid substrates with continuous phase glow discharge polymerization of thiol-containing monomers may have been compromised by oxidation. Thiol surface functionalization via glow discharge polymerization has been reported as requiring pulsing. Herein, continuous phase glow discharge polymerization of allyl mercaptan (2-propene-1-thiol) was used to generate significant densities of thiol groups on a mixed macrodiol polyurethane and tantalum. Three general classes of chemistry are used to conjugate proteins to thiol groups, with maleimide linkers being used most commonly. Here the pH specificity of maleimide reactions was used effectively to conjugate surface-bound thiol groups to amine groups in collagen. XPS demonstrated surface-bound thiol groups without evidence of oxidation, along with the subsequent presence of maleimide and collagen. Glow discharge reactor parameters were optimized by testing the resistance of bound collagen to degradation by 8 M urea. The nature of the chemical bonding of collagen to surface thiol groups was effectively assessed by colorimetric assay (ELISA) of residual collagen after incubation in 8 M urea over 8 days and after incubation with keratinocytes over 15 days. The facile creation of useable solid-supported thiol groups via continuous phase glow discharge polymerization of allyl mercaptan opens a route for attaching a vast array of bioactive molecules

    Surface functionalization of unsized carbon fiber using nitrenes derived from organic azides

    Full text link
    The surface of both oxidized and unoxidized unsized carbon fiber was functionalized using an aziridine linking group derived from reactive nitrenes. The aziridine functionality arose from the cyclization of a reactive nitrene species onto the highly electron rich graphitic surface of the carbon fibers; the nitrene species evolved from thermal N2 elimination from the corresponding (room temperature stable) azide. Surface functionalization using the nitrene approach was supported by X-ray Photoelectron Spectroscopy, in both oxidized and unoxidized carbon fiber. Attempts were also made to functionalize using amide chemistry, the two-step acid chloride coupling being successful for oxidized fibers by utilizing the carboxylic acid rich defect sites on the carbon fiber. None of the chemical treatment pathways had a significant impact on the tensile strength of the individual fibers, and atomic force microscopy revealed that fibers undergoing these treatment methodologies remained intact, without creating additional surface defects
    • 

    corecore