73 research outputs found
Development and Characterization of Polymorphic Microsatellite Markers (SSRs) for an Endemic Plant, Pseudolarix amabilis (Nelson) Rehd. (Pinaceae)
Pseudolarix (Pinaceae) is a vulnerable (sensu IUCN) monotypic genus restricted to southeastern China. To better understand levels of genetic diversity, population structure and gene flow among populations of P. amabilis, we developed five compound SSR markers and ten novel polymorphic expressed sequence tags (EST) derived microsatellites. The results showed that all 15 loci were polymorphic with the number of alleles per locus ranging from two to seven. The expected and observed heterozygosities varied from 0.169 to 0.752, and 0.000 to 1.000, respectively. The inbreeding coefficient ranged from −0.833 to 1.000. These markers will contribute to research on genetic diversity and population genetic structure of P. amabilis, which in turn will contribute to the species conservation
Draft genome sequence of the Tibetan antelope
The Tibetan antelope (Pantholops hodgsonii) is endemic to the extremely inhospitable high-altitude environment of the Qinghai-Tibetan Plateau, a region that has a low partial pressure of oxygen and high ultraviolet radiation. Here we generate a draft genome of this artiodactyl and use it to detect the potential genetic bases of highland adaptation. Compared with other plain-dwelling mammals, the genome of the Tibetan antelope shows signals of adaptive evolution and gene-family expansion in genes associated with energy metabolism and oxygen transmission. Both the highland American pika, and the Tibetan antelope have signals of positive selection for genes involved in DNA repair and the production of ATPase. Genes associated with hypoxia seem to have experienced convergent evolution. Thus, our study suggests that common genetic mechanisms might have been utilized to enable high-altitude adaptation
Does or did the supernova remnant Cassiopeia A operate as a PeVatron?
For decades, supernova remnants (SNRs) have been considered the prime sources
of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to
PeV energies and thus dominate CR flux up to the knee is currently under
intensive theoretical and phenomenological debate. The direct test of the
ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy
(UHE; ~TeV) -rays. In this context, the historical
SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE
observations. This paper presents the observation of Cas A and its vicinity by
the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE
band, combined with the young age of Cas A, enabled us to derive stringent
model-independent limits on the energy budget of UHE protons and nuclei
accelerated by Cas A at any epoch after the explosion. The results challenge
the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in
the Milky Way.Comment: 11 pages, 3 figures, Accepted by the APJ
Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A
The diffuse Galactic -ray emission, mainly produced via interactions
between cosmic rays and the interstellar medium and/or radiation field, is a
very important probe of the distribution, propagation, and interaction of
cosmic rays in the Milky Way. In this work we report the measurements of
diffuse -rays from the Galactic plane between 10 TeV and 1 PeV
energies, with the square kilometer array of the Large High Altitude Air Shower
Observatory (LHAASO). Diffuse emissions from the inner
(, ) and outer
(, ) Galactic plane are detected with
and significance, respectively. The outer Galactic
plane diffuse emission is detected for the first time in the very- to
ultra-high-energy domain (~TeV). The energy spectrum in the inner Galaxy
regions can be described by a power-law function with an index of
, which is different from the curved spectrum as expected from
hadronic interactions between locally measured cosmic rays and the
line-of-sight integrated gas content. Furthermore, the measured flux is higher
by a factor of than the prediction. A similar spectrum with an index of
is found in the outer Galaxy region, and the absolute flux for
TeV is again higher than the prediction for hadronic
cosmic ray interactions. The latitude distributions of the diffuse emission are
consistent with the gas distribution, while the longitude distributions show
clear deviation from the gas distribution. The LHAASO measurements imply that
either additional emission sources exist or cosmic ray intensities have spatial
variations.Comment: 12 pages, 8 figures, 5 tables; accepted for publication in Physical
Review Letters; source mask file provided as ancillary fil
Luminal breast cancer cell lines overexpressing ZNF703 are resistant to tamoxifen through activation of Akt/mTOR signaling.
BACKGROUND: Selective estrogen receptor modulators, such as tamoxifen, play a pivotal role in the treatment of luminal-type breast cancer. However, in clinical applications, nearly half of breast cancer patients are insensitive to tamoxifen, a small number of whom have early recurrence or disease progression when receiving tamoxifen. The underlying mechanism of this resistance has not been determined. ZNF703 is a novel oncogene in the 15% of breast cancers that harbor 8p12 amplifications. Therefore, the goal of our study was to explore the role of ZNF703 in tamoxifen resistance. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemistry techniques to examine ZNF703 expression in stage I-III primary breast cancer specimens and found a positive expression rate of 91.3%. All patients were divided into either high or low ZNF703 expression groups. We found that high ZNF703 expression mainly occurred in ER+ and PR+ breast cancers. Furthermore, 4-hydroxytamoxifen had different modes of action in breast cancer cell lines with high or low ZNF703 expression. ZNF703 overexpression in MCF-7 breast cancer cells activated the Akt/mTOR signaling pathway, downregulated ERα, and reduced the antitumor effect of tamoxifen. Low-dose tamoxifen did not suppress, but rather, stimulated the growth of cells overexpressing ZNF703. ZNF703 knockdown in MDA-MB-134 and HCC1500 luminal B-type breast cancer cell lines by siRNA significantly decreased survival rates when cells were treated with tamoxifen. Furthermore, targeting ZNF703 with a mTOR inhibitor increased the inhibitory effects of tamoxifen in ZNF703-overexpressing cells. CONCLUSION/SIGNIFICANCE: Our study suggests that ZNF703 expression levels may predict tamoxifen sensitivity. Tamoxifen should be administered with caution to those patients bearing tumors with ZNF703 overexpression. However, large clinical trials and prospective clinical studies are needed to verify these results
- …