17 research outputs found

    SLIT2/ROBO1-miR-218-1-RET/PLAG1: a new disease pathway involved in Hirschsprung\u27s disease.

    Get PDF
    Hirschsprung\u27s disease (HSCR) is a rare congenital disease caused by impaired proliferation and migration of neural crest cells. We investigated changes in expression of microRNAs (miRNAs) and the genes they regulate in tissues of patients with HSCR. Quantitative real-time PCR and immunoblot analyses were used to measure levels of miRNA, mRNAs, and proteins in colon tissues from 69 patients with HSCR and 49 individuals without HSCR (controls). Direct interactions between miRNAs and specific mRNAs were indentified in vitro, while the function role of miR-218-1 was investigated by using miR-218 transgenic mice. An increased level of miR-218-1 correlated with increased levels of SLIT2 and decreased levels of RET and PLAG1 mRNA and protein. The reductions in RET and PLAG1 by miR-218-1 reduced proliferation and migration of SH-SY5Y cells. Overexpression of the secreted form of SLIT2 inhibited cell migration via binding to its receptor ROBO1. Bowel tissues from miR-218-1 transgenic mice had nerve fibre hyperplasia and reduced numbers of gangliocytes, compared with wild-type mice. Altered miR-218-1 regulation of SLIT2, RET and PLAG1 might be involved in the pathogenesis of HSCR

    Regional market segments of China : opportunities and barriers in a big emerging market

    Full text link
    As one of the big emerging markets, China’s enormous population and rapid increase in consumer spending have attracted many multinational corporations (MNCs). Meanwhile, the misconception of China as a homogeneous market often leads to difficulties in assessing market demand and enacting effective strategies. Examines the diversity among Chinese consumers across seven regional markets. Data from a national survey suggest that consumers from various regions are significantly different from one another in terms of purchasing power, attitudes, lifestyles, media use, and consumption patterns. MNCs need to take a cautionary approach when expanding into the inland regions, and must adapt to the local market conditions and devise sustainable strategies

    A Study of the Distribution of the Threshed Mixture by a Double Longitudinal Axial Flow Corn Threshing Device

    No full text
    In order to determine the distribution pattern of the threshed mixture in the double longitudinal axial flow threshing device, single-factor experiments were conducted on the self-developed experimental platform for the double longitudinal axis threshing device. The experimental factors included drum speed, threshing clearance, and feed rate. The variations in the distribution of the threshed material along the axial and radial directions were examined. The results indicate that the mixed material after threshing exhibits uneven distribution both axially and radially. Along the axial direction, the mass of corn kernels initially increases and then decreases and is predominantly distributed in the front one-third section of the drum. Meanwhile, the mass of corn cobs continuously increases. In the radial direction, the mass of corn kernels and cobs is higher in the middle and on both sides, with the corn kernels being most concentrated in the middle and the corn cobs mostly on the sides. Combining the corn kernel breakage rate and the unthreshed rate, the optimal operating conditions were determined as follows: a drum speed of 400 r/min, a concave clearance of 50 mm, and a feed rate of 16 kg/s

    Ecological Stoichiometric Changes and the Synergistic Restoration of Vegetation Concrete Restoration Systems under Different Precipitation Conditions

    No full text
    Based on vegetation-soil nutrient monitoring data under different precipitation conditions, this study investigated the impact of precipitation changes on the ecological restoration process of disturbed slopes. Precipitation change, to a certain extent, changed the carbon (C), nitrogen (N) and phosphorus (P) content and the stoichiometric ratio of the soil–plant system. With the increase of the weekly precipitation from 10 to 20 mm, the C content of Cynodon and Indigofera Amblyantha Craib on each slope gradually increased, increased by 8.69% and 4.28%, respectively, compared with the initial recovery period, and the N/P of Cynodon increased from 3.81 to 4.94, and the N limit gradually decreased, while the limit of P increased continuously. The efficiency of the coordinated utilization of N and P of the Indigofera Amblyantha Craib increased, which had a certain adaptability to changes in precipitation. The C/N and C/P in the soil first increased and then decreased, and reached the peak at the slope of 15 mm precipitation, while the N/P fluctuated around 0.35 overall. N was an important element restricting the growth of grass, while P was an important influencing element limiting the growth of shrubs. This also showed that soil C, N and P had a good promoting effect on plant growth, and the self-regulating nutrient utilization strategies of different growth forms of plants under different precipitation conditions differed. There was a coupling effect in the contents of C, N, P and their stoichiometric ratio in the soil–plant system, and stoichiometry and elastic ecological interactions jointly controlled the supply and demand of elements in the plants, but there was no consistent temporal pattern of nutrient ecological stoichiometric ratio in the plant–soil system during the recovery process, thus requiring further research and evaluation

    Ecological Stoichiometric Changes and the Synergistic Restoration of Vegetation Concrete Restoration Systems under Different Precipitation Conditions

    No full text
    Based on vegetation-soil nutrient monitoring data under different precipitation conditions, this study investigated the impact of precipitation changes on the ecological restoration process of disturbed slopes. Precipitation change, to a certain extent, changed the carbon (C), nitrogen (N) and phosphorus (P) content and the stoichiometric ratio of the soil–plant system. With the increase of the weekly precipitation from 10 to 20 mm, the C content of Cynodon and Indigofera Amblyantha Craib on each slope gradually increased, increased by 8.69% and 4.28%, respectively, compared with the initial recovery period, and the N/P of Cynodon increased from 3.81 to 4.94, and the N limit gradually decreased, while the limit of P increased continuously. The efficiency of the coordinated utilization of N and P of the Indigofera Amblyantha Craib increased, which had a certain adaptability to changes in precipitation. The C/N and C/P in the soil first increased and then decreased, and reached the peak at the slope of 15 mm precipitation, while the N/P fluctuated around 0.35 overall. N was an important element restricting the growth of grass, while P was an important influencing element limiting the growth of shrubs. This also showed that soil C, N and P had a good promoting effect on plant growth, and the self-regulating nutrient utilization strategies of different growth forms of plants under different precipitation conditions differed. There was a coupling effect in the contents of C, N, P and their stoichiometric ratio in the soil–plant system, and stoichiometry and elastic ecological interactions jointly controlled the supply and demand of elements in the plants, but there was no consistent temporal pattern of nutrient ecological stoichiometric ratio in the plant–soil system during the recovery process, thus requiring further research and evaluation

    Aberrant Reduction of MiR-141 Increased CD47/CUL3 in Hirschsprung's Disease

    No full text
    Background: MiR-141 has been confirmed to be associated with various human diseases. However, whether miR-141 is involved in the pathogenesis of Hirschsprung's disease (HSCR) remains unknown. Here, we design the experiment to reveal the relationship between miR-141 and HSCR. Methods: Quantitative real-time PCR and Western blot were used to detect the expression levels of miR-141 and its potential genes in 70 tissues of HSCR compared with 60 controls. Bisulfite sequencing PCR (BSP) assay was applied to explain the possible mechanism of the aberrant expression level of miR-141. We employed a dual-luciferase reporter assay to validate the regulation relation between miR-141 and CD47/CUL3. Cell migration, proliferation, apoptosis, and cell cycle progression were examined by transwell assay, MTT assay, and flow cytometry, respectively. Results: MiR-141 was down-regulated whereas CD47 and CUL3 expression was increased in colon tissues from patients with HSCR compared with control group, The increased level of CD47 and CUL3 induced by miR-141 reduced proliferation and migration of 293T and SH-SY5Y cells. Furthermore, this suppression was reversed by reducing of CD47 and CUL3. Hypermethylation of a CpG Island in the promoter region of miR-141 gene was confirmed in HSCR tissues. Conclusion: Aberrant reduction of miR-141 may play an important role in the pathogenesis of HSCR with the inhibiting affection on cell migration and proliferation abilities. The present study demonstrates for the first time the role of miR-141 and its target genes in the occurrence of HSCR, and provides us a new direction for the study of the pathogenesis of Hirschsprung's disease
    corecore