12 research outputs found

    The Tianlai Cylinder Pathfinder array: System functions and basic performance analysis

    Get PDF
    The Tianlai Cylinder Pathfinder is a radio interferometer array designed to test techniques for 21 cm intensity mapping in the post-reionization Universe, with the ultimate aim of mapping the large scale structure and measuring cosmological parameters such as the dark energy equation of state. Each of its three parallel cylinder reflectors is oriented in the north-south direction, and the array has a large field of view. As the Earth rotates, the northern sky is observed by drift scanning. The array is located in Hongliuxia, a radio-quiet site in Xinjiang, and saw its first light in September 2016. In this first data analysis paper for the Tianlai cylinder array, we discuss the sub-system qualification tests, and present basic system performance obtained from preliminary analysis of the commissioning observations during 2016-2018. We show typical interferometric visibility data, from which we derive the actual beam profile in the east-west direction and the frequency band-pass response. We describe also the calibration process to determine the complex gains for the array elements, either using bright astronomical point sources, or an artificial on site calibrator source, and discuss the instrument response stability, crucial for transit interferometry. Based on this analysis, we find a system temperature of about 90 K, and we also estimate the sensitivity of the array

    Multi-Stream Convolution-Recurrent Neural Networks Based on Attention Mechanism Fusion for Speech Emotion Recognition

    No full text
    The quality of feature extraction plays a significant role in the performance of speech emotion recognition. In order to extract discriminative, affect-salient features from speech signals and then improve the performance of speech emotion recognition, in this paper, a multi-stream convolution-recurrent neural network based on attention mechanism (MSCRNN-A) is proposed. Firstly, a multi-stream sub-branches full convolution network (MSFCN) based on AlexNet is presented to limit the loss of emotional information. In MSFCN, sub-branches are added behind each pooling layer to retain the features of different resolutions, different features from which are fused by adding. Secondly, the MSFCN and Bi-LSTM network are combined to form a hybrid network to extract speech emotion features for the purpose of supplying the temporal structure information of emotional features. Finally, a feature fusion model based on a multi-head attention mechanism is developed to achieve the best fusion features. The proposed method uses an attention mechanism to calculate the contribution degree of different network features, and thereafter realizes the adaptive fusion of different network features by weighting different network features. Aiming to restrain the gradient divergence of the network, different network features and fusion features are connected through shortcut connection to obtain fusion features for recognition. The experimental results on three conventional SER corpora, CASIA, EMODB, and SAVEE, show that our proposed method significantly improves the network recognition performance, with a recognition rate superior to most of the existing state-of-the-art methods

    Smartphone-Based Pedestrian Dead Reckoning for 3D Indoor Positioning

    No full text
    Indoor localization based on pedestrian dead reckoning (PDR) is drawing more and more attention of researchers in location-based services (LBS). The demand for indoor localization has grown rapidly using a smartphone. This paper proposes a 3D indoor positioning method based on the micro-electro-mechanical systems (MEMS) sensors of the smartphone. A quaternion-based robust adaptive cubature Kalman filter (RACKF) algorithm is proposed to estimate the heading of pedestrians based on magnetic, angular rate, and gravity (MARG) sensors. Then, the pedestrian behavior patterns are distinguished by detecting the changes of pitch angle, total accelerometer and barometer values of the smartphone in the duration of effective step frequency. According to the geometric information of the building stairs, the step length of pedestrians and the height difference of each step can be obtained when pedestrians go up and downstairs. Combined with the differential barometric altimetry method, the optimal height can be computed by the robust adaptive Kalman filter (RAKF) algorithm. Moreover, the heading and step length of each step are optimized by the Kalman filter to reduce positioning error. In addition, based on the indoor map vector information, this paper proposes a heading calculation strategy of the 16-wind rose map to improve the pedestrian positioning accuracy and reduce the accumulation error. Pedestrian plane coordinates can be solved based on the Pedestrian Dead-Reckoning (PDR). Finally, combining pedestrian plane coordinates and height, the three-dimensional positioning coordinates of indoor pedestrians are obtained. The proposed algorithm is verified by actual measurement examples. The experimental verification was carried out in a multi-story indoor environment. The results show that the Root Mean Squared Error (RMSE) of location errors is 1.04–1.65 m by using the proposed algorithm for three participants. Furthermore, the RMSE of height estimation errors is 0.17–0.27 m for three participants, which meets the demand of personal intelligent user terminal for location service. Moreover, the height parameter enables users to perceive the floor information

    Intrinsic Identification and Mitigation of Multipath for Enhanced GNSS Positioning

    No full text
    In global navigation satellite system (GNSS)-based positioning and applications, multipath is by far the most obstinate impact. To overcome paradoxical issues faced by current processing approaches for multipath, this paper employs an intrinsic method to identify and mitigate multipath based on empirical mode decomposition (EMD) and Hilbert–Huang transform (HHT). Frequency spectrum and power spectrum are comprehensively employed to identify and extract multipath from complex data series composed by combined GNSS observations. To systematically inspect the multipath from both code range and carrier phase, typical kinds of combinations of the GNSS observations including the code minus phase (CMP), differential correction (DC), and double differential (DD) carrier phase are selected for the suggested intrinsic approach to recognize and mitigate multipath under typical positioning modes. Compared with other current processing algorithms, the proposed methodology can deal with multipath under normal positioning modes without recourse to the conditions that satellite orbits are accurately repeated and surrounding environments of observing sites remain intact. The method can adaptively extract and eliminate multipath from solely the GNSS observations using intrinsic decomposition mechanism. From theoretical discussions and validating tests, it is found that both code and carrier phase multipath can be identified and distinguished from ionospheric delay and other impacts using the EMD based techniques. The resultant positioning accuracy is therefore improved to an obvious extent after the removal of the multipath. Overall, the proposed method can form an extensive and sound technical frame to enhance localization accuracy under typical GNSS positioning modes and harsh multipath environments

    Phosphoproteomics Profile of Chicken Cecum in the Response to <i>Salmonella enterica</i> Serovar Enteritidis Inoculation

    No full text
    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a foodborne pathogen, which can cause great threats to human health through the consumption of contaminated poultry products. This research combines TMT labeling, HPLC and mass-spectrometry-based phosphoproteomics on cecum of the F1 cross of Guangxi Yao chicken and Jining Bairi chicken. The treated group was inoculated with 0.3 mL inoculum S. Enteritidis, and the control group was inoculated with 0.3 mL phosphate-buffered saline (PBS). A total of 338 differentially phosphorylated modification sites in 243 differentially phosphorylated proteins (DPPs) were chosen for downstream analyses. A total of 213 sites in 146 DPPs were up-regulated and 125 sites in 97 DPPs were down-regulated. Functional analysis was performed for DPPs based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the protein domain. The DPPs were mainly enriched in immune- and metabolic-related GO-BP (biological process) and KEGG pathways. We predicted and classified the subcellular structure and COG/KOG of DPPs. Furthermore, protein–protein interaction network analyses were performed by using multiple algorithms. We identified 71 motifs of the phosphorylated modification sites and selected 18 sites randomly to detect the expression level through parallel reaction monitoring (PRM). S. Enteritidis inoculation caused phosphorylation alteration in immune- and metabolic-related proteins. The invasion of S. Enteritidis may be actualized by inducing cecum cell apoptosis through the endoplasmic reticulum pathway, and chickens could resist the invasion of S. Enteritidis by affecting the function of ECM receptors. The findings herein provide a crucial theoretical foundation to understand the molecular mechanism and epigenetic regulation in response to S. Enteritidis inoculation in chickens

    Different hydration methods for the prevention of contrast-induced nephropathy in patients with elective percutaneous coronary intervention: a retrospective study

    No full text
    Abstract Background Hydration is currently the main measure to prevent contrast-induced nephropathy (CIN). We aimed to compare the preventive effect of preprocedure and postprocedure hydration on CIN in patients with coronary heart disease undergoing elective percutaneous coronary intervention (PCI). Methods A retrospective study included 198 cases of postprocedure hydration and 396 cases of preprocedure hydration using propensity score matching. The incidence of CIN 48 h after PCI and adverse events within 30 days after contrast media exposure were compared between the two groups. Logistic regression analysis was used to analyse the risk factors for CIN. Results The incidence of CIN in the postprocedure hydration group was 3.54%, while that in the preprocedure hydration group was 4.8%. There was no significant difference between the two groups (p = 0.478). Multivariate logistic regression analysis showed that diabetes mellitus, baseline BNP and cystatin C levels, and contrast agent dosage were independent risk factors for CIN. There was no significant difference in the incidence of major adverse events between the two groups (3.03% vs. 2.02%, p = 0.830). Conclusions Postprocedure hydration is equally effective compared to preoperative hydration in the prevention of CIN in patients with coronary heart disease undergoing elective PCI

    The Electromagnetic Characteristics of the Tianlai Cylindrical Pathfinder Array

    No full text
    International audienceA great challenge for 21 cm intensity mapping experiments is the strong foreground radiation which is orders of magnitude brighter than the 21 cm signal. Removal of the foreground takes advantage of the fact that its frequency spectrum is smooth while the redshifted 21 cm signal spectrum is stochastic. However, a complication is the non-smoothness of the instrument response. This paper describes the electromagnetic simulation of the Tianlai cylinder array, a pathfinder for 21 cm intensity mapping experiments. Due to the vast scales involved, a direct simulation requires a large amount of computing resources. We have made the simulation practical by using a combination of methods: first simulate a single feed, then an array of feed units, finally with the feed array and a cylindrical reflector together, obtain the response for a single cylinder. We studied its radiation pattern, bandpass response and the effects of mutual coupling between feed units, and compared the results with observation. Many features seen in the measurement result are reproduced well in the simulation, especially the oscillatory features which are associated with the standing waves on the reflector. The mutual coupling between feed units is quantified with S-parameters, which decrease as the distance between the two feeds increases. Based on the simulated S-parameters, we estimate the correlated noise which has been seen in the visibility data, and the results show very good agreement with the data in both magnitude and frequency structures. These results provide useful insights on the problem of 21 cm signal extraction for real instruments

    Progress in the Construction and Testing of the Tianlai Radio Interferometers

    No full text
    International audienceThe Tianlai Pathfinder is designed to demonstrate the feasibility of using wide field of view radio interferometers to map the density of neutral hydrogen in the Universe after the Epoch of Reionizaton. This approach, called 21 cm intensity-mapping, promises an inexpensive means for surveying the large-scale structure of the cosmos. The Tianlai Pathfinnder presently consists of an array of three, 15 m &times; 40 m cylinder telescopes and an array of sixteen, 6 m diameter dish antennas located in a radio-quiet part of western China. The two types of arrays were chosen to determine the advantages and disadvantages of each approach. The primary goal of the Pathfinder is to make 3D maps by surveying neutral hydrogen over large areas of the sky in two different redshift ranges: first at 1.03 &gt; z &gt; 0.78 (700 - 800 MHz) and later at 0.21 &gt; z &gt; 0.12 (1170-1270 MHz). The most significant challenge to 21 cm intensity-mapping is the removal of strong foreground radiation that dwarfs the cosmological signal. It requires exquisite knowledge of the instrumental response, i.e. calibration. In this paper we provide an overview of the status of the Pathfinder and discuss the details of some of the analysis that we have carried out to measure the beam function of both arrays. We compare electromagnetic simulations of the arrays to measurements, discuss measurements of the gain and phase stability of the instrument, and provide a brief overview of the data processing pipeline
    corecore