6 research outputs found

    Characterising Crim1 in Vertebrate Development

    No full text
    This thesis investigates the role of Crim1, a transmembrane protein that is expressed in a number of areas in the vertebrate embryo including the developing kidney, eye, testis and spinal cord, which we believe may be a regulator of vertebrate tissue development. To dissect the function of Crim1 in normal mammalian development, two vertebrate models were used, zebrafish and mice. The results show that in zebrafish, crim1 is expressed early in development from the 16-cell stage through to 30 hours post fertilisation (Chapter 3). At 24 hours post fertilisation crim1 is expressed in the intermediate cell mass (icm), the site of haemangioblast development. Haemangioblasts are precursor cells that contribute to the formation of the blood and endothelial cell lineages. Injection of crim1 antisense oligonucleotides into zebrafish embryos (crim1 morphants) lead to an expansion of the icm and defects in the trunk, tail, somites and vasculature. The injection of crim1 antisense oligonucleotides into transgenic fli:GFP zebrafish revealed defects in the intersegmental, dorsal longitudinal anastomotic and parachordal vessels. Although crim1 is expressed during haemagiogensis the primary defect in the crim1 morphant zebrafish appears to be vascular. Further experiments used a ‘knock-in’ mouse, Crim1KST264, in which a loss of functional Crim1 leads to defects in limb (syndactyly), skeleton, eye, vascular, kidney and placental development. Analysis of the kidney phenotype in the embryonic Crim1KST264 homozygotes showed that a loss of Crim1 affects ERK1/2 and phosphorylated-Smad1/5/8 protein expression, although has no direct effect on BMP or TGFβ protein expression (Chapter 4). Analysis of the adult Crim1 outbred kidneys revealed they have albuminuria and leaky vasculature. The complex phenotype presented by the Crim1KST264 homozygote kidneys suggests Crim1 may be regulating multiple growth factor pathways. As Crim1 was shown to be expressed in the placenta, we characterised the role of Crim1 in placental development using the Crim1KST264 mouse (Chapter 5). Crim1KST264 homozygote placentas and embryos are smaller than their wild-type littermates. Our investigations revealed that Crim1 is expressed in trophoblast giant cells and in spongiotrophoblasts. A loss of Crim1 causes a developmental defect in that the junctional zone (region of the placenta containing spongiotrophoblasts and glycogen cells) is expanded, although this phenotype does not appear to be due to a defect in proliferation or apoptosis. Further analysis of E15.5 Crim1KST264 homozygote placentas revealed there was a reduction in the number of labyrinth trophoblast gaint cells. Thus, by using zebrafish and mouse as two model organisms of vertebrate development, this thesis has showed that Crim1 is clearly important for normal embryonic development. To dissect the complex phenotype presented by the Crim1KST264 mouse, further studies of Crim1 and its interaction with other growth factor pathways is needed to elucidate how and to what extent they interact with Crim1 to determine its biological effect on vertebrate tissue

    A simple way to cultivate referencing habits in first year biology students

    Get PDF
    Scientific writing skills are an important aspect of undergraduate science curricula, and science careers. Learning activities and assessment tasks that are designed to enhance students' scientific writing skills place emphasis on the students' existing ability to search and cite valid references. This can sometimes be an intimidating expectation, especially for international students. This study investigated a simple way to cultivate and sustain appropriate referencing habits in first year undergraduate science students, and related these habits to academic performance. The students were enrolled at The University of Queensland (UQ), Australia, but studying at Taylor's University, Malaysia, as part of a twinning arrangement between the two institutions. This study found that careful scaffolding of practical reports and the inclusion of one challenging question per practical report was enough to significantly improve student skills in referencing and academic performance. It further found that students generally preferred to use the course textbook as their major reference, followed by a variety of sources including journal articles

    Vps26B-retromer negatively regulates plasma membrane resensitization of PAR-2

    No full text
    Retromer is a trimeric complex composed of Vps26, Vps29, and Vps35 and has been shown to be involved in trafficking and sorting of transmembrane proteins within the endosome. The Vps26 paralog, Vps26B, defines a distinct retromer complex (Vps26B-retromer) in vivo and in vitro. Although endosomally associated, Vps26B-retromer does not bind the established retromer transmembrane cargo protein, cation-independent mannose 6-phosphate receptor (CI-M6PR), indicating it has a distinct role to retromer containing the Vps26A paralog. In the present study we use the previously established Vps26B-expressing HEK293 cell model to address the role of Vps26B-retromer in trafficking of the protease activated G-protein coupled receptor PAR-2 to the plasma membrane. In these cells there is no apparent defect in the initial activation of the receptor, as evidenced by release of intracellular calcium, ERK1/2 signaling and endocytosis of activated receptor PAR-2 into degradative organelles. However, we observe a significant delay in plasma membrane repopulation of the protease activated G protein-coupled receptor PAR-2 following stimulation, resulting in a defect in PAR-2 activation after resensitization. Here we propose that PAR-2 plasma membrane repopulation is regulated by Vps26B-retromer, describing a potential novel role for this complex

    Crim1(KST264/KST264) mice implicate Crim1 in the regulation of vascular endothelial growth factor-A activity during glomerular vascular development

    No full text
    Crim1, a transmembrane cysteine-rich repeat-containing protein that is related to chordin, plays a role in the tethering of growth factors at the cell surface. Crim1 is expressed in the developing kidney; in parietal cells, podocytes, and mesangial cells of the glomerulus; and in pericytes that surround the arterial vasculature. A gene-trap mouse line with an insertion in the Crim1 gene (Crim1(KST264/KST264)) displayed perinatal lethality with defects in multiple organ systems. This study further analyzed the defects that are present within the kidneys of these mice. Crim1(KST264/KST264) mice displayed abnormal glomerular development, illustrated by enlarged capillary loops, podocyte effacement, and mesangiolysis. When outbred, homozygotes that reached birth displayed podocyte and glomerular endothelial cell defects and marked albuminuria. The podocytic co-expression of Crim1 with vascular endothelial growth factor-A (VEGF-A) suggested a role for Crim1 in the regulation of VEGF-A action. Crim1 and VEGF-A were shown to interact directly, providing evidence that cysteine-rich repeat-containing proteins can bind to non-TGF-beta superfamily ligands. Crim1(KST264/KST264) mice display a mislocalization of VEGF-A within the developing glomerulus, as assessed by immunogold electron microscopy and increased activation of VEGF receptor 2 (Flk1) in the glomerular endothelial cells, suggesting that Crim1 regulates the delivery of VEGF-A by the podocytes to the endothelial cells. This is the first in vivo demonstration of regulation of VEGF-A delivery and supports the hypothesis that Crim1 functions to regulate the release of growth factors from the cell of synthesis

    Downregulation of SNX27 expression does not exacerbate amyloidogenesis in the APP/PS1 Alzheimer's disease mouse model

    No full text
    There is in\ua0vitro evidence that sorting nexin family member 27 (SNX27), a member of the retromer complex, changes the distribution of the amyloid-beta (Aβ) precursor protein (APP) to promote its recycling and thereby prevent the production of Aβ, the toxic protein associated with Alzheimer's disease (AD). In this study, we analyzed the phenotype of the familial AD APP/PS mouse strain lacking one copy of the SNX27 gene. The reduction in SNX27 expression had no significant effect on the in\ua0vivo accumulation of soluble, total, or plaque-deposited Aβ, which is overproduced by the familial APP/PS transgenes. Hippocampal structure and cholinergic basal forebrain neuronal health were also unaffected. Nonetheless, mild positive and negative effects of age and/or genotype on spatial navigation performance were observed in SNX27 and SNX27APP/PS mice, respectively. These data suggest that downregulation of SNX27 alone does not have long-term negative consequences on spatial memory, but that cognitive dysfunction in the context of high Aβ deposition is exacerbated by the cellular or molecular changes induced by reduced SNX27 function
    corecore