77 research outputs found

    X-linked myotubular myopathy is associated with epigenetic alterations and is ameliorated by HDAC inhibition

    Get PDF
    X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention

    Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior

    Get PDF
    Purpose We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. Methods We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. Results These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. Conclusion These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis

    Heterozygous Variants in KDM4B Lead to Global Developmental Delay and Neuroanatomical Defects

    Get PDF
    KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria. In mice, lysine demethylase 4B is expressed during brain development with high levels in the hippocampus, a region important for learning and memory. To understand how KDM4B variants can lead to GDD in humans, we assessed the effect of KDM4B disruption on brain anatomy and behavior through an in vivo heterozygous mouse model (Kdm4b+/-), focusing on neuroanatomical changes. In mutant mice, the total brain volume was significantly reduced with decreased size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly. This report demonstrates that variants in KDM4B are associated with GDD/ intellectual disability and neuroanatomical defects. Our findings suggest that KDM4B variation leads to a chromatinopathy, broadening the spectrum of this group of Mendelian disorders caused by alterations in epigenetic machinery

    Clinical Characterization of Pediatric Erythromelalgia: A Single-Center Case Series

    No full text
    Erythromelalgia is a descriptive term for severe burning pain and erythema in the distal extremities relieved by cold and exacerbated by heat. Pediatric case series to date are relatively small. We extracted and analyzed medical record data for 42 pediatric patients to describe clinical characteristics, associated conditions, and responses to treatments. Informed consent was obtained according to an IRB-approved protocol that included gene discovery. Three patients had confirmed Nav1.7 sodium channelopathies, with six additional patients under investigation with novel gene candidates. There was a female predominance (2.5:1), and the median onset age was 12 years (IQR = 3–14). Patients saw a median of three specialists (IQR = 2–3) for a diagnosis. The majority (90%) reported bilateral symptoms. Cooling methods usually provided partial relief, while heat and exercise exacerbated pain. No medication appeared to be consistently effective; commonly prescribed medications included sodium channel blockers (n = 37), topical analgesics (n = 26), gabapentin (n = 22), and aspirin (n = 15). Based on the currently published literature, we believe this cohort is the largest pediatric study of erythromelalgia to date. Many findings are consistent with those of previously published case series. Work is in progress to establish a prospective cohort and multi-center registry

    OR33-07 ARNT2: a potential novel candidate gene for monogenic obesity in humans

    No full text
    Introduction: Aryl hydrocarbon nuclear translocator 2 (ARNT2) is a basic helix-loop-helix (bHLH)-PAS (Per/Arnt/Sim) transcription factor shown to be critical to the development of paraventricular nucleus of the hypothalamus (PVN), key region for energy homeostasis and feeding response. In vivo and in vitro studies have shown that ARNT2 is an obligate heterodimer for SIM1, known cause of monogenic obesity. Null mutations in Arnt2 in animals are not viable, but hypomorphic mutation results in hyperphagic obesity and its associated consequences (1). Due to the critical role of ARNT2 in the development of PVN, we hypothesize that hypomorphic mutations may result in early onset obesity in humans.Methods: The Genetics of Early Childhood Obesity (GECO) study recruits children with severe obesity (BMI > 120% of 95th percentile) of early onset (< 6 years). Whole exome sequencing (WES) was performed in a subset of proband-parent trios. The functional validation of the mutation(s) in ARNT2 is ongoing with co-transfection of tagged Arnt2 and Sim1 in HEK293 cells, with the induction of a luciferase reporter gene under the control of 6 repeats of bHLH-PAS core binding element by the Arnt2-Sim1 complex.Results: Two adolescents from unrelated families were found to have genetic variants in ARNT2. Subject 1 has a novel de novo heterozygous coding variant in ARNT2, c.388 C>G (p.P130A, CADD 25), predicted to be deleterious by 8/12 in silico algorithms. She is a 14-year old Caucasian girl with severe early onset obesity, BMI 28.1 kg/m2 (BMIz +4.72) at 2.5 years of age that has increased to 53.54 kg/m2 (BMIz + 3.25) at 14-years, and height > 95th %tile. She is non-dysmorphic, has developmental delay, absence seizures, behavior abnormalities & glucose intolerance/dyslipidemia secondary to obesity. Using genematcher, we identified another proband with the phenotype of obesity: an African American girl (BMIz +1.9) with biallelic inherited heterozygous variants in ARNT2, c.1228T>A (p.W410R, CADD 29) and c.916G>A (p.G306S, CADD 22). An only child conceived by IVF, she is non-dysmorphic and on treatment for bilateral focal epilepsy. All 3 variants are rare, with mean allele frequency < 0.005 in population-based databases such as gNOMAD. Both the patients have early onset obesity and a significant neurological phenotype. ARNT2 is a highly constrained gene of 717 amino acids with a significant depletion of missense variants in the N-terminus (1-244 aa) and overall fewer loss of function variants in ~282,644 alleles sequenced in gNOMAD.CConclusions: We propose that hypomorphic mutations in ARNT2 could be a potential novel cause of monogenic obesity in humans. Future studies will investigate the molecular mechanisms causing weight dysregulation in patient specific disease relevant hypothalamic neurons.Reference: (1) Turer et al., Dis Model Mech. 2018; 11(12
    corecore