33 research outputs found

    Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity

    Full text link
    We review recent work on renormalization group (RG) improved cosmologies based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic parameter values. In particular we argue that QEG effects can account for the entire entropy of the present Universe in the massless sector and give rise to a phase of inflationary expansion. This phase is a pure quantum effect and requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun

    Multi-field Inflation with a Random Potential

    Full text link
    Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian motion with a drift in the D-dimensional field space. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, leads to rich phenomenologies, such as primordial fluctuations in the power spectrum on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and can be detected or falsified with more data coming in the future. The tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, but can possibly be enhanced by resonant effects or arise from the entropic perturbations during the onset of (p)reheating. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.Comment: More clarifications and references adde

    Multi-field Inflation with a Random Potential

    Full text link
    Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian motion with a drift in the D-dimensional field space. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, leads to rich phenomenologies, such as primordial fluctuations in the power spectrum on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and can be detected or falsified with more data coming in the future. The tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, but can possibly be enhanced by resonant effects or arise from the entropic perturbations during the onset of (p)reheating. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.Comment: More clarifications and references adde
    corecore