3 research outputs found

    Search reduction in hierarchical distributed problem solving

    Full text link
    Knoblock and Korf have determined that abstraction can reduce search at a single agent from exponential to linear complexity (Knoblock 1991; Korf 1987). We extend their results by showing how concurrent problem solving among multiple agents using abstraction can further reduce search to logarithmic complexity. We empirically validate our formal analysis by showing that it correctly predicts performance for the Towers of Hanoi problem (which meets all of the assumptions of the analysis). Furthermore, a powerful form of abstraction for large multiagent systems is to group agents into teams, and teams of agents into larger teams, to form an organizational pyramid. We apply our analysis to such an organization of agents and demonstrate the results in a delivery task domain. Our predictions about abstraction's benefits can also be met in this more realistic domain, even though assumptions made in our analysis are violated. Our analytical results thus hold the promise for explaining in general terms many experimental observations made in specific distributed AI systems, and we demonstrate this ability with examples from prior research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42828/1/10726_2005_Article_BF01384251.pd

    Architectural trends in large systems

    No full text
    corecore