2 research outputs found

    Supersymmetry solution for finitely extensible dumbbell model

    Full text link
    Exact relaxation times and eigenfunctions for a simple mechanical model of polymer dynamics are obtained using supersymmetry methods of quantum mechanics. The model includes the finite extensibility of the molecule and does not make use of the self-consistently averaging approximation. The finite extensibility reduces the relaxation times when compared to a linear force. The linear viscoelastic behaviour is obtained in the form of the ``generalized Maxwell model''. Using these results, a numerical integration scheme is proposed in the presence of a given flow kinematics.Comment: 5 pages, 2 figure

    Quasi-classical path integral approach to supersymmetric quantum mechanics

    Full text link
    {}From Feynman's path integral, we derive quasi-classical quantization rules in supersymmetric quantum mechanics (SUSY-QM). First, we derive a SUSY counterpart of Gutzwiller's formula, from which we obtain the quantization rule of Comtet, Bandrauk and Campbell when SUSY is good. When SUSY is broken, we arrive at a new quantization formula, which is found as good as and even sometime better than the WKB formula in evaluating energy spectra for certain one-dimensional bound state problems. The wave functions in the stationary phase approximation are also derived for SUSY and broken SUSY cases. Insofar as a broken SUSY case is concerned, there are strong indications that the new quasi-classical approximation formula always overestimates the energy eigenvalues while WKB always underestimates.Comment: 13 pages + 5 figures, complete paper submitted as postscript file, to appear in Phys. Rev.
    corecore