22 research outputs found

    Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing

    Get PDF
    With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing

    Rational design, optimization, and biological evaluation of novel α-Phosphonopropionic acids as covalent inhibitors of Rab geranylgeranyl transferase

    Get PDF
    Rab geranylgeranyltransferase (GGTase-II, RGGT) catalyses the post-translational modification of eukaryotic Rab GTPases, proteins implicated in several pathologies, including cancer, diabetes, neurodegenerative, and infectious diseases. Thus, RGGT inhibitors are believed to be a potential platform for the development of drugs and tools for studying processes related to the abnormal activity of Rab GTPases. Here, a series of new alpha-phosphonocarboxylates have been prepared in the first attempt of rational design of covalent inhibitors of RGGT derived from non-covalent inhibitors. These compounds were equipped with electrophilic groups capable of binding cysteines, which are present in the catalytic cavity of RGGT. A few of these analogues have shown micromolar activity against RGGT, which correlated with their ability to inhibit the proliferation of the HeLa cancer cell line. The proposed mechanism of this inhibitory activity was rationalised by molecular docking and mass spectrometric measurements, supported by stability and reactivity studies

    Lysophosphatidic acids, cyclic phosphatidic acids and autotaxin as promissing targets in therapies of cancer and other diseases

    No full text
    Lysophospholipids have long been recognized as membrane phospholipid metabolites, but only recently lysophosphatidic acids (LPA) have been demonstrated to act on specific G protein-coupled receptors. The widespread expression of LPA receptors and coupling to several classes of G proteins allow LPA-dependent regulation of numerous processes, such as vascular development, neurogenesis, wound healing, immunity, and cancerogenesis. Lysophosphatidic acids have been found to induce many of the hallmarks of cancer including cellular processes such as proliferation, survival, migration, invasion, and neovascularization. Furthermore, autotaxin (ATX), the main enzyme converting lysophosphatidylcholine into LPA was identified as a tumor cell autocrine motility factor. On the other hand, cyclic phosphatidic acids (naturally occurring analogs of LPA generated by ATX) have anti-proliferative activity and inhibit tumor cell invasion and metastasis. Research achievements of the past decade suggest implementation of preclinical and clinical evaluation of LPA and its analogs, LPA receptors, as well as autotaxin as potential therapeutic targets

    Proangiogenic activity of plant extracts in accelerating wound healing - a new face of old phytomedicines

    No full text
    Angiogenesis, the formation of new capillaries from pre-existing vascular network, plays an important role in physiological and pathological processes such as embryonic development, wound healing, and development of atherosclerosis. Extension of the circulatory network is also considered to be one the most important factors during cancerogenesis. Inhibition of angiogenesis may lead to inhibition of tumor growth whereas stimulation may improve wound healing. Research achievements suggest the use of plants and their extracts as potential therapeutic agents with pro- or antiangiogenic activity. Since the anticancer and antiangiogenic properties of many phytomedicines have been amply reviewed elsewhere this paper will focus on the treatment of vascular insufficiency in wound healing. Globally accepted herbal drugs are thought to be safe and effective, however, there is a need for more evidence-based confirmation in controlled and validated trials. Among the most frequently studied proangiogenic phytochemicals are ginsenosides from Panax ginseng, beta-sitosterol from Aloe vera, calycosin from Radix Astragali, and extracts from Hippophae rhamnoides L. and Angelica sinensis

    Degradation of extracellular nucleotides and their analogs in HeLa and HUVEC cell cultures.

    No full text
    The use of nucleotides and their analogs in the pharmacological studies of nucleotide receptors (P2 class) should be preceded by detailed studies on their degradation connected with ecto-enzymes of a given cell type. In the present studies we have analyzed stability of some phosphorothioate and phosphonate analogs of ATP and ADP in the HeLa epitheloid carcinoma and endothelial HUVEC cells cultures. Our studies have revealed that ecto-nucleotide pyrophosphatase (E-NPP) is one of the main enzymes involved in the extracellular degradation of ATP and other nucleotides in the HeLa cells. On the other hand, the ecto-ATPDase is responsible for the hydrolysis of extracellular nucleotides in human endothelial cell cultures, while the E-NPP-like enzymes of the HUVEC cells are not essential to this degradation. The concerted action of the aforementioned ecto-enzymes and nucleotide pyrophosphatase, 5'-nucleotidase and adenosine deaminase present in fetal bovine serum (FBS) supplied to the culture medium, results in partial or complete degradation of the phosphorothioate (ATPγS) and phosphonate analogs of adenosine nucleotides (α,β-methylene-ATP and β,γ-methylene-ATP) in the cell cultures. Only ADPβS appears to be resistant to these enzymes. The influence of some nucleotides and their analogs on the proliferation of the HeLa cells in presence or absence of FBS is also discussed

    Targeting reversible post-translational modifications with PROTACs: a focus on enzymes modifying protein lysine and arginine residues

    No full text
    AbstractPROTACs represent an emerging field in medicinal chemistry, which has already led to the development of compounds that reached clinical studies. Posttranslational modifications contribute to the complexity of proteomes, with 2846 disease-associated sites. PROTAC field is very advanced in targeting kinases, while its use for enzymes mediating posttranslational modifications of the basic amino acid residues, started to be developed recently. Therefore, we bring together this less popular class of PROTACs, targeting lysine acetyltransferases/deacetylases, lysine and arginine methyltransferases, ADP-ribosyltransferases, E3 ligases, and ubiquitin-specific proteases. We put special emphasis on structural aspects of PROTAC elements to facilitate the lengthy experimental endeavours directed towards developing PROTACs. We will cover the period from the inception of the field, 2017, to April 2023
    corecore