218 research outputs found
Constraints on the mass of a habitable planet with water of nebular origin
From an astrobiological point of view, special attention has been paid to the
probability of habitable planets in extrasolar systems. The purpose of this
study is to constrain a possible range of the mass of a terrestrial planet that
can get water. We focus on the process of water production through oxidation of
the atmospheric hydrogen--the nebular gas having been attracted
gravitationally--by oxide available at the planetary surface. For the water
production to work well on a planet, a sufficient amount of hydrogen and enough
high temperature to melt the planetary surface are needed. We have simulated
the structure of the atmosphere that connects with the protoplanetary nebula
for wide ranges of heat flux, opacity, and density of the nebular gas. We have
found both requirements are fulfilled for an Earth-mass planet for wide ranges
of the parameters. We have also found the surface temperature of planets of <=
0.3 Earth masses is lower than the melting temperature of silicate (~ 1500K).
On the other hand, a planet of more than several Earth masses becomes a gas
giant planet through runaway accretion of the nebular gas.Comment: 25 pages, 8 figures, to appear in the 01 September 2006 issue of Ap
Real Time Bridge Scour Monitoring with Magneto-Inductive Field Coupling
Scour was responsible for most of the U.S. bridges that collapsed during the past 40 years. The maximum scour depth is the most critical parameter in bridge design and maintenance. Due to scouring and refilling of river-bed deposits, existing technologies face a challenge in measuring the maximum scour depth during a strong flood. In this study, a new methodology is proposed for real time scour monitoring of bridges. Smart Rocks with embedded electronics are deployed around the foundation of a bridge as field agents. With wireless communications, these sensors can send their position change information to a nearby mobile station. This paper is focused on the design, characterization, and performance validation of active sensors. The active sensors use 3-axis accelerometers/magnetometers with a magneto-inductive communication system. In addition, each sensor includes an ID, a timer, and a battery level indicator. A Smart Rock system enables the monitoring of the most critical scour condition and time by logging and analyzing sliding, rolling, tilting, and heading of the spatially distributed sensors
Smart Rocks and Wireless Communication System for Real-Time Monitoring and Mitigation of Bridge Scour -- A Proof-of-Concept Study
This study aims to integrate commercial measurement and communication components into a scour monitoring system with magnets or electronics embedded in smart rocks, and evaluate and improve its performance in laboratory and field conditions for the movement of smart rocks. Properly-designed smart rocks were found to be automatically rolled into the very bottom of a scour hole and can give critical information about the maximum scour depth and effectiveness of rip-rap mitigation strategies. Four types of smart rock technologies were investigated in this proof-of-concept phase of study, including passive with embedded magnets, active with magneto-inductive communication, active with controllable magnet rotation, and active with acoustic communication. Their performances were evaluated against three criteria: 1) movement accuracy within 0.5 m, 2) transmission distance between 5 and 30 m, and 3) at least one measurement every 15 minutes. Test results demonstrated that the proposed smart rocks are cost-effective, viable technologies for bridge scour monitoring
Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates
The discovery of the pseudogap in the cuprates created significant excitement
amongst physicists as it was believed to be a signature of pairing, in some
cases well above the room temperature. In this "pre-formed pairs" scenario, the
formation of pairs without quantum phase rigidity occurs below T*. These pairs
condense and develop phase coherence only below Tc. In contrast, several recent
experiments reported that the pseudogap and superconducting states are
characterized by two different energy scales, pointing to a scenario, where the
two compete. However a number of transport, magnetic, thermodynamic and
tunneling spectroscopy experiments consistently detect a signature of
phase-fluctuating superconductivity above leaving open the question of whether
the pseudogap is caused by pair formation or not. Here we report the discovery
of a spectroscopic signature of pair formation and demonstrate that in a region
of the phase diagram commonly referred to as the "pseudogap", two distinct
states coexist: one that persists to an intermediate temperature Tpair and a
second that extends up to T*. The first state is characterized by a doping
independent scaling behavior and is due to pairing above Tc, but significantly
below T*. The second state is the "proper" pseudogap - characterized by a
"checker board" pattern in STM images, the absence of pair formation, and is
likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal
value around 130-150K even for materials with very different Tc, likely setting
limit on highest, attainable Tc in cuprates. The observed universal scaling
behavior with respect to Tpair indicates a breakdown of the classical picture
of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure
Superionic Fluoride Gate Dielectrics with Low Diffusion Barrier for Advanced Electronics
Exploration of new dielectrics with large capacitive coupling is an essential
topic in modern electronics when conventional dielectrics suffer from the
leakage issue near breakdown limit. To address this looming challenge, we
demonstrate that rare-earth-metal fluorides with extremely-low ion migration
barriers can generally exhibit an excellent capacitive coupling over 20 F
cm (with an equivalent oxide thickness of ~0.15 nm and a large effective
dielectric constant near 30) and great compatibility with scalable device
manufacturing processes. Such static dielectric capability of superionic
fluorides is exemplified by MoS transistors exhibiting high on/off current
ratios over 10, ultralow subthreshold swing of 65 mV dec, and
ultralow leakage current density of ~10 A cm. Therefore, the
fluoride-gated logic inverters can achieve significantly higher static voltage
gain values, surpassing ~167, compared to conventional dielectric. Furthermore,
the application of fluoride gating enables the demonstration of NAND, NOR, AND,
and OR logic circuits with low static energy consumption. Notably, the
superconductor-to-insulator transition at the clean-limit
BiSrCaCuO can also be realized through fluoride
gating. Our findings highlight fluoride dielectrics as a pioneering platform
for advanced electronics applications and for tailoring emergent electronic
states in condensed matters.Comment: 33 pages, 5 figure
Fully gapped topological surface states in BiSe films induced by a d-wave high-temperature superconductor
Topological insulators are a new class of materials, that exhibit robust
gapless surface states protected by time-reversal symmetry. The interplay
between such symmetry-protected topological surface states and symmetry-broken
states (e.g. superconductivity) provides a platform for exploring novel quantum
phenomena and new functionalities, such as 1D chiral or helical gapless
Majorana fermions, and Majorana zero modes which may find application in
fault-tolerant quantum computation. Inducing superconductivity on topological
surface states is a prerequisite for their experimental realization. Here by
growing high quality topological insulator BiSe films on a d-wave
superconductor BiSrCaCuO using molecular beam epitaxy,
we are able to induce high temperature superconductivity on the surface states
of BiSe films with a large pairing gap up to 15 meV. Interestingly,
distinct from the d-wave pairing of BiSrCaCuO, the
proximity-induced gap on the surface states is nearly isotropic and consistent
with predominant s-wave pairing as revealed by angle-resolved photoemission
spectroscopy. Our work could provide a critical step toward the realization of
the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274
- …