127 research outputs found

    Inferring Termination Conditions for Logic Programs using Backwards Analysis

    Full text link
    This paper focuses on the inference of modes for which a logic program is guaranteed to terminate. This generalises traditional termination analysis where an analyser tries to verify termination for a specified mode. Our contribution is a methodology in which components of traditional termination analysis are combined with backwards analysis to obtain an analyser for termination inference. We identify a condition on the components of the analyser which guarantees that termination inference will infer all modes which can be checked to terminate. The application of this methodology to enhance a traditional termination analyser to perform also termination inference is demonstrated

    Live Heap Space Analysis for Languages with Garbage Collection

    Get PDF
    The peak heap consumption of a program is the maximum size of the live data on the heap during the execution of the program, i.e., the minimum amount of heap space needed to run the program without exhausting the memory. It is well-known that garbage collection (GC) makes the problem of predicting the memory required to run a program difficult. This paper presents, the best of our knowledge, the first live heap space analysis for garbage-collected languages which infers accurate upper bounds on the peak heap usage of a program’s execution that are not restricted to any complexity class, i.e., we can infer exponential, logarithmic, polynomial, etc., bounds. Our analysis is developed for an (sequential) object-oriented bytecode language with a scoped-memory manager that reclaims unreachable memory when methods return. We also show how our analysis can accommodate other GC schemes which are closer to the ideal GC which collects objects as soon as they become unreachable. The practicality of our approach is experimentally evaluated on a prototype implementation.We demonstrate that it is fully automatic, reasonably accurate and efficient by inferring live heap space bounds for a standardized set of benchmarks, the JOlden suite

    Reachability-based acyclicity analysis by Abstract Interpretation

    Full text link
    In programming languages with dynamic use of memory, such as Java, knowing that a reference variable x points to an acyclic data structure is valuable for the analysis of termination and resource usage (e.g., execution time or memory consumption). For instance, this information guarantees that the depth of the data structure to which x points is greater than the depth of the data structure pointed to by x.f for any field f of x. This, in turn, allows bounding the number of iterations of a loop which traverses the structure by its depth, which is essential in order to prove the termination or infer the resource usage of the loop. The present paper provides an Abstract-Interpretation-based formalization of a static analysis for inferring acyclicity, which works on the reduced product of two abstract domains: reachability, which models the property that the location pointed to by a variable w can be reached by dereferencing another variable v (in this case, v is said to reach w); and cyclicity, modeling the property that v can point to a cyclic data structure. The analysis is proven to be sound and optimal with respect to the chosen abstraction

    Comparing Cost Functions in Resource Analysis

    Get PDF
    Cost functions provide information about the amount of resources required to execute a program in terms of the sizes of input arguments. They can provide an upper-bound, a lower-bound, or the average-case cost. Motivated by the existence of a number of automatic cost analyzers which produce cost functions, we propose an approach for automatically proving that a cost function is smaller than another one. In all applications of resource analysis, such as resource-usage verification, program synthesis and optimization, etc., it is essential to compare cost functions. This allows choosing an implementation with smaller cost or guaranteeing that the given resource-usage bounds are preserved. Unfortunately, automatically generated cost functions for realistic programs tend to be rather intricate, defined by multiple cases, involving non-linear subexpressions (e.g., exponential, polynomial and logarithmic) and they can contain multiple variables, possibly related by means of constraints. Thus, comparing cost functions is far from trivial. Our approach first syntactically transforms functions into simpler forms and then applies a number of su!cient conditions which guarantee that a set of expressions is smaller than another expression. Our preliminary implementation in the COSTA system indicates that the approach can be useful in practic

    Parametric Inference of Memory Requirements for Garbage Collected Languages

    Get PDF
    The accurate prediction of program's memory requirements is a critical component in software development. Existing heap space analyses either do not take deallocation into account or adopt specific models of garbage collectors which do not necessarily correspond to the actual memory usage. We present a novel approach to inferring upper bounds on memory requirements of Java-like programs which is parametric on the notion of object lifetime, i.e., on when objects become collectible. If objects lifetimes are inferred by a reachability analysis, then our analysis infers accurate upper bounds on the memory consumption for a reachability-based garbage collector. Interestingly, if objects lifetimes are inferred by a heap liveness analysis, then we approximate the program minimal memory requirement, i.e., the peak memory usage when using an optimal garbage collector which frees objects as soon as they become dead. The key idea is to integrate information on objects lifetimes into the process of generating the recurrence equations which capture the memory usage at the different program states. If the heap size limit is set to the memory requirement inferred by our analysis, it is ensured that execution will not exceed the memory limit with the only assumption that garbage collection works when the limit is reached. Experiments on Java bytecode programs provide evidence of the feasibility and accuracy of our analysis

    Termination and Cost Analysis with COSTA and its User Interfaces

    Get PDF
    COSTA is a static analyzer for Java bytecode which is able to infer cost and termination information for large classes of programs. The analyzer takes as input a program and a resource of interest, in the form of a cost model, and aims at obtaining an upper bound on the execution cost with respect to the resource and at proving program termination. The costa system has reached a considerable degree of maturity in that (1) it includes state-of-the-art techniques for statically estimating the resource consumption and the termination behavior of programs, plus a number of specialized techniques which are required for achieving accurate results in the context of object-oriented programs, such as handling numeric fields in value analysis; (2) it provides several nontrivial notions of cost (resource consumption) including, in addition to the number of execution steps, the amount of memory allocated in the heap or the number of calls to some user-specified method; (3) it provides several user interfaces: a classical command line, a Web interface which allows experimenting remotely with the system without the need of installing it locally, and a recently developed Eclipse plugin which facilitates the usage of the analyzer, even during the development phase; (4) it can deal with both the Standard and Micro editions of Java. In the tool demonstration, we will show that costa is able to produce meaningful results for non-trivial programs, possibly using Java libraries. Such results can then be used in many applications, including program development, resource usage certification, program optimization, etc
    corecore