299 research outputs found

    Load-balanced parallel banded-system solvers

    Get PDF
    AbstractSolving banded systems is important in the applications of science and engineering. This paper presents a load-balancing strategy for solving banded systems in parallel when the number of processors used is small. An optimization-based load-balancing analysis is given to determine how many loads should be assigned to each processor in order to minimize the time requirement. Some experimentations are carried out on the nCUBE 2E multiprocessor to demonstrate the speedup advantage of the proposed load-balancing strategy. The speedup improvement ratio ranges from 47% to 66% (from 12% to 24%) when using 4 (8) processors

    More on QCD Ghost Dark Energy

    Full text link
    The difference between vacuum energy of quantum fields in Minkowski space and in Friedmann-Robterson-Walker universe might be related to the observed dark energy. The vacuum energy of the Veneziano ghost field introduced to solve the U(1)AU(1)_A problem in QCD is of the form, H+O(H2) H+ {\cal O}(H^2). Based on this, we study the dynamical evolution of a phenomenological dark energy model whose energy density is of the form αH+βH2\alpha H+\beta H^2. In this model, the universe approaches to a de Sitter phase at late times. We fit the model with current observational data including SnIa, BAO, CMB, BBN, Hubble parameter and growth rate of matter perturbation. It shows that the universe begins to accelerate at redshift z0.75z\sim 0.75 and this model is consistent with current data. In particular, this model fits the data of growth factor well as the ΛCDM\Lambda CDM model.Comment: 14 pages, 4 figures, 2 table

    A generalized switched-capacitor step-up multi-level inverter employing single DC source

    Get PDF
    In this paper, a new generalized step-up multilevel DC-AC converter is proposed, which is suitable for applications with low-voltage input sources such as photovoltaic power generation and electric vehicles. This inverter can achieve a high voltage gain by controlling the series-parallel conversion of DC power supply and capacitors. Only one DC voltage source and a few power devices are employed. The maximum output voltage and the number of output levels can be further increased through the switched-capacitor unit's extension and the submodule cascaded extension. Moreover, the capacitor voltages are self-balanced without complicated voltage control circuits. The complementary operating mechanism between each pair of switches simplifies the modulation algorithm. The inductive-load ability is fully taken into account in the proposed inverter. Additionally, a remarkable characteristic of the inverter is that the charging and discharging states among different capacitors are synchronous, which reduces the voltage ripple of the frontend capacitors. The circuit structure, the working principle, the modulation strategy, the capacitors and losses analysis are presented in detail. Afterwards, the advantages of the proposed inverter are analyzed by comparing with other recently proposed inverters. Finally, the steady-state and dynamic performance of the proposed inverter is verified and validated by simulation and experiment

    Detecting the cosmic acceleration with current data

    Full text link
    The deceleration parameter q as the diagnostic of the cosmological accelerating expansion is investigated. By expanding the luminosity distance to the fourth order of redshift and the so-called y-redshift in two redshift bins and fitting the SNIa data (Union2), the marginalized likelihood distribution of the current deceleration parameter shows that the cosmic acceleration is still increasing, but there might be a tendency that the cosmic acceleration will slow down in the near future. We also fit the Hubble evolution data together with SNIa data by expanding the Hubble parameter to the third order, showing that the present decelerating expansion is excluded within 2σ2\sigma error. Further exploration on this problem is also approached in a non-parametrization method by directly reconstructing the deceleration parameter from the distance modulus of SNIa, which depends neither on the validity of general relativity nor on the content of the universe or any assumption regarding cosmological parameters. More accurate observation datasets and more effective methods are still in need to make a clear answer on whether the cosmic acceleration will keep increasing or not.Comment: 20 pages, 5 figures, 3 table

    Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31

    Get PDF
    A composite coating was produced via (i) plasma electrolytic oxidation (PEO) with Ce salt sealing, on which layered double hydroxides (LDHs) were deposited via a hydrothermal treatment, and (ii) then modified by phytic acid (PA) via an ion-exchange reaction. The final coating (characterized using XRD, XPS, FT-IR, SEM, EDS and GDOES) consisted of LDHs/Mg(OH)/CeO/Ce(OH) with a non-uniform Ce distribution. The corrosion protection and self-healing ability were investigated using polarization curves, EIS, immersion tests and SVET. The composite coating modified with PA showed the most superior corrosion protection and self-healing ability, attributed to the synergistic effect between Ce species and phosphate

    Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    Get PDF
    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,00020,000 light curves in the i band were obtained lasting from March to July, 2008. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb--Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis and locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence (EBAI) method. The primary and the secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.Comment: 41 pages, 12 figures; published online in ApJ
    corecore