206 research outputs found
Transport Coefficients from Extremal Gauss-Bonnet Black Holes
We calculate the shear viscosity of strongly coupled field theories dual to
Gauss-Bonnet gravity at zero temperature with nonzero chemical potential. We
find that the ratio of the shear viscosity over the entropy density is
, which is in accordance with the zero temperature limit of the ratio
at nonzero temperatures. We also calculate the DC conductivity for this system
at zero temperature and find that the real part of the DC conductivity vanishes
up to a delta function, which is similar to the result in Einstein gravity. We
show that at zero temperature, we can still have the conclusion that the shear
viscosity is fully determined by the effective coupling of transverse gravitons
in a kind of theories that the effective action of transverse gravitons can be
written into a form of minimally coupled scalars with a deformed effective
coupling.Comment: 23 pages, no figure; v2, refs added; v3, more refs added; v4, version
to appear in JHE
Quantification of the influence of drugs on zebrafish larvae swimming kinematics and energetics
The use of zebrafish larvae has aroused wide interest in the medical field for its potential role in the development of new therapies. The larvae grow extremely quickly and the embryos are nearly transparent which allows easy examination of its internal structures using fluorescent imaging techniques. Medical treatment of zebrafish larvae can directly influence its swimming behaviours. These behaviour changes are related to functional changes of central nervous system and transformations of the zebrafish body such as muscle mechanical power and force variation, which cannot be measured directly by pure experiment observation. To quantify the influence of drugs on zebrafish larvae swimming behaviours and energetics, we have developed a novel methodology to exploit intravital changes based on observed zebrafish locomotion. Specifically, by using an in-house MATLAB code to process the recorded live zebrafish swimming video, the kinematic locomotion equation of a 3D zebrafish larvae was obtained, and a customised Computational Fluid Dynamics tool was used to solve the fluid flow around the fish model which was geometrically the same as experimentally tested zebrafish. The developed methodology was firstly verified against experiment, and further applied to quantify the fish internal body force, torque and power consumption associated with a group of normal zebrafish larvae vs. those immersed in acetic acid and two neuroactive drugs. As indicated by our results, zebrafish larvae immersed in 0.01% acetic acid display approximately 30% higher hydrodynamic power and 10% higher cost of transport than control group. In addition, 500 μM diphenylhydantoin significantly decreases the locomotion activity for approximately 50% lower hydrodynamic power, whereas 100 mg/L yohimbine has not caused any significant influences on 5 dpf zebrafish larvae locomotion. The approach has potential to evaluate the influence of drugs on the aquatic animal’s behaviour changes and thus support the development of new analgesic and neuroactive drugs
- …